BIBLIOGRAPHY
593
[217]
Tipper,
J.,
(1976).
The
study
of
geological
objects
in
three dimensions
by the
computerized
reconstruction
of
serial sections.
Journal
of
Geology,
V. 84, pp.
476-484.
[218]
Tipper,
J.,
(1977).
A
method
and
Fortran program
for the
computerized
re-
construction
of
three dimensional
objects
from serial cross sections. Computer
and
Geosciences,
V. 3, pp.
579-599.
[219]
Tompson,
A.F.B.,
Abadou,
R., and
Gelhar,
L.W., (1989). Implementation
of
the
three-dimensional turning
bands
random
field
generator.
Water
Resources
Research,
V. 25, No. 10, pp.
2227-2243.
[220]
Turk,
G., and
O'Brien, J.F., (1999).
Shape
Transformation
Using
Varia-
tional Implicit Functions.
ACM-SIGGRAPH'99
Conference Proceedings, Los-
Angeles, California, August,
pp.
242-250.
[221]
Tutte,
W.,
(1984).
Graph
Theory. Encyclopedia
of
Mathematics
and its Ap-
plications,
V. 21,
Cambridge University Press,
New
York.
[222]
Viseur,
S.,
Shtuka,
A. and
Mallet, J.L., (1998).
New
Fast,
Stochastic, Boolean
Simulation
of
Fluvial Deposits.
SPE
Annual Technical Conference
and
Exhi-
bition,
New
Orleans, article
No.
49281, September 1998.
[223]
Voronoi,
D.,
(1908). Nouvelles applications
des
parametres
continus
a la
theorie
des
formes quadratiques. Recherche
sur
les
paralleloedres
primitifs.
Journal
Reine Angew. Math. 134.
[224]
Wackernagel,
H.,
(1995).
Multivariate
Geostatistics.
Springer Verlag, Berlin,
256
p.
[225]
Walton,
D.J.,
and
Meek D.S., (1996).
A
triangular
G
1
patch from boundary
curves.
Computer-Aided
Design Journal,
V. 28, No. 2, pp.
113-123.
[226]
Watson, D.F., (1981). Computing
the
n-dimensional
Delaunay tesselation with
application
to
Voronoi
polytopes. Comput. Journal,
V. 24, No. 2, pp.
167-172.
[227]
Weaver, R.C., (1964). Relative merits
of
interpolation
and
approximating func-
tions
in the
grade
prediction problem. Computers
in the
mineral industries,
Parks,
G.A.
(ed.),
Part
1:
Stanford Univ.
Publ.
in the
Geological Sciences,
V.
9,
pp.
171-185.
[228]
Weiler,
K.,
(1988).
The
Radial
Edge
Structure:
a
topological
repesentation
for
non-manifold
geometric
boundary
modeling. Geometric Modeling
for CAD
Applications, Elsevier Science
Publish.,
pp.
3-36.
[229]
Weisstein, E.W., (1999).
CRC
Concise Encyclopedia
of
Mathematics.
Chap-
man
and
Hall/CRC,
London, 1969
p.
[230]
White,
N.,
Jackson,
J.,
and
Mackenzie,
D.,
(1986).
The
relationship between
the
geometry
of
normal faults
and
that
of
the
sedimentary layers
in
their hang-
ing
walls. Journal
of
Structural Geology,
V. 8, No. 8, pp.
897-909.
[231]
Whitehead,
J.H.C., (1949). Combinatorial Homotopy
I.
Bull.
Am.
Math. Soc.,
V.
55, pp.
213-245.
[232]
Whittaker,
E.T., (1923).
On a new
method
of
graduation. Proceedings
of the
Edinburgh Mathematical Society,
V. 41, pp.
63-75.
[233]
Whittle,
P.,
(1963). Prediction
and
Regulation. University
of
Minnesota, Min-
neapolis (ISBN 0-8166-1148-3).