Reliability and credit risk models 363
The matrix value for d.f. are not known and so we construct these d.f. by means
of random number generators.
We report the results at time 5 and at time 10 of the matrix ( )
ij
t
respectively in
Table 4.2.1 and Table 4.2.2.
For example the element 0.04326 that is in row
AA and in column A represents
the probability that a firm that at time 0 has a rating
AA will have rating A at
time 5.
AAA AA A BBB BB B CCC D
AAA
0.93129 0.06044 0.00504 0.00148 0.00164 0.00009 0.00000 0.00001
AA
0.00464 0.94420 0.04326 0.00519 0.00100 0.00165 0.00002 0.00005
A
0.00051 0.01505 0.94403 0.02950 0.00697 0.00330 0.00004 0.00060
BBB
0.00030 0.00295 0.03704 0.90384 0.04110 0.00976 0.00105 0.00397
BB
0.00023 0.00148 0.00572 0.04727 0.85624 0.05887 0.00908 0.02111
B
0.00000 0.00096 0.00195 0.00351 0.03377 0.89002 0.02404 0.04575
CCC
0.00000 0.00004 0.00474 0.00535 0.01258 0.03479 0.85292 0.08958
D
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
Table 4.2.1: probabilities (5)
ij
AAA AA A BBB BB B CCC D
AAA
0.83968 0.13696 0.01488 0.00375 0.00415 0.00047 0.00003 0.00008
AA
0.01084 0.86440 0.10055 0.01526 0.00433 0.00421 0.00012 0.00030
A
0.00141 0.03991 0.84668 0.08517 0.01638 0.00807 0.00032 0.00206
BBB
0.00086 0.00749 0.08702 0.78071 0.08579 0.02549 0.00327 0.00937
BB
0.00056 0.00344 0.01366 0.09229 0.69959 0.13097 0.01814 0.04135
B
0.00003 0.00279 0.00512 0.01162 0.06732 0.75319 0.05575 0.10419
CCC
0.00001 0.00029 0.01329 0.01436 0.02313 0.07803 0.61935 0.25154
D
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
Table 4.2.2: probabilities (10)
ij
Table 4.3 gives the reliability results
()
i
t
, probabilities to have no default in a
time t (row index) starting in the state i (column) at time 0.
AAA AA A BBB BB B CCC D
1 1.00000 1.00000 0.99987 0.99933 0.99846 0.99642 0.99294 0.0
2 1.00000 1.00000 0.99975 0.99884 0.99461 0.98808 0.98146 0.0
3 1.00000 0.99999 0.99969 0.99789 0.98908 0.97527 0.96374 0.0
4 0.99999 0.99997 0.99961 0.99715 0.98624 0.97029 0.94233 0.0
5 0.99999 0.99995 0.99940 0.99603 0.97889 0.95425 0.91042 0.0
6 0.99998 0.99992 0.99917 0.99505 0.97436 0.94749 0.89800 0.0
7 0.99997 0.99989 0.99888 0.99418 0.97144 0.93795 0.84898 0.0
8 0.99995 0.99984 0.99856 0.99334 0.96771 0.92535 0.79778 0.0
9 0.99994 0.99978 0.99825 0.99210 0.96446 0.90689 0.77184 0.0
10 0.99992 0.99970 0.99794 0.99063 0.95865 0.89581 0.74846 0.0
Table 4.3: probabilities of not having a default