138 Turnbull
6. Because the emission wavelength is 410–420 nm, there is a need to filter out background
visible wavelength light from the UV lamps. This can be done effectively with special glass
filters that permit transmission of UV light but do not allow light of wavelengths >400 nm
to pass. A blue bandpass filter on the camera also improves sensitivity. Suitable filters are
available from HV Skan (Stratford Road, Solihull, UK; Tel: 0121 733 3003) or UVItec
Ltd (St Johns Innovation Centre, Cowley Road, Cambridge, UK: www.uvitec.
demon.co.uk).
7. Required exposure times are strongly dependent on sample loading and the level of detec-
tion required. Overly long exposures will result in excessive background signal. Note that
negative images are usually better for band identification (see figures). Under the condi-
tions described, the limit of sensitivity is ~1–2 pmol/band (see Fig. 1), with ~5–10 pmol
being optimal. Recently it has been found that ~10-fold more sensitive detection is pos-
sible using an alternative fluorophore aminonaphthalenedisulfonic acid (21,22).
References
1. Spillmann, D. and Lindahl, U. (1994) Gycosaminoglycan-protein interactions: a question
of specificity. Curr. Opin. Cell Biol. 4, 677–682.
2. Bernfield M., Gotte, M., Park, P. W., et al. Functions of Cell Surface Heparan Sulfate
Proteoglycans. Ann. Rev. Biochem. (1999) 68, 729–777.
3. Turnbull, J. E. and Gallagher, J. T. (1991) Distribution of Iduronate-2-sulfate residues in
HS: evidence for an ordered polymeric structure. Biochem. J. 273, 553–559.
4. Turnbull, J. E., Fernig, D., Ke, Y., Wilkinson, M. C., and Gallagher, J. T. (1992) Identifica-
tion of the basic FGF binding sequence in fibroblast HS. J. Biol. Chem. 267, 10,337–10,341.
5. Pervin, A., Gallo, C., Jandik, K., Han, X., and Linhardt, R., (1995) Preparation and struc-
tural characterisation of heparin-derived oligosaccharides. Glycobiology 5, 83–95.
6. Yamada, S., Yamane, Y., Tsude, H., Yoshida, K., and Sugahara, K. (1998) A major com-
mon trisulfated hexasaccharide isolated from the low sulfated irregular region of porcine
intestinal heparin. J. Biol. Chem., 273, 1863–1871.
7. Yamada, S., Yoshida, K., Sugiura, M., Sugahara, K., Khoo, K., Morris, H., and Dell, A. (1993)
Structural studies on the bacterial lyase-resistant tetrasaccharides derived from the antithrom-
bin binding site of porcine mucosal intestinal heparin. J. Biol. Chem. 268, 4780–4787.
8. Mallis, L., Wang, H., Loganathan, D., and Linhardt, R. (1989) Sequence analysis of highly
sulfated heparin-derived oligosaccharides using FAB-MS. Anal. Chem. 61, 1453–1458.
9. Rhomberg A. J., Ernst, S., Sasisekharan, R., Biemann, K., et al. (1998) Mass spectromet-
ric and capillary electrophoretic investigation of the enzymatic degradation of heparin-
like glycosaminoglycans. Proc. Natl. Acad. Sci. (USA) 95, 4176–4181.
10. Hopwood, J. (1989) Enzymes that degrade heparin and heparan sulfate. In: Heparin (Lane
and Lindahl, eds.), Edward Arnold, London, UK, pp. 191–227.
11. Turnbull, J. E., Hopwood, J. J., and Gallagher, J. T. (1999) A strategy for rapid sequencing
of heparan sulfate/heparin saccharides. Proc. Natl. Acad. Sci. (USA) 96, 2698–2703.
12. Merry, C. L. R., Lyon, M., Deakin, J. A., Hopwood, J. J., and Gallagher, J. T. (1999)
Highly sensitive sequencing of the sulfated domains of heparan sulfate. J. Biol. Chem.
274, 18,455–18,462.
13. Vives, R. R., Pye, D. A., Samivirta, M., Hopwood, J. J., Lindahl, U., and Gallagher, J. T.
(1999) Sequence analysis of heparan sulphate and heparin oligosaccharides. Biochem. J.
339, 767–773.
14. Venkataraman, G., Shriver, Z., Raman, R., Sasisekharan, R., et al. (1999) Sequencing
complex polysaccharides. Science 286, 537–542.