We use the Law of Sines to find side a of triangle ABC.
sin
3
24°
sin
a
43°
Multiply both sides by 3a: a sin 24° 3 sin 43°
Divide both sides by sin 24°: a
3
s
s
in
in
2
4
4
3
°
°
5.03
Now in the right triangle CBD, we have
sin 67°
hy
o
p
p
o
p
t
o
e
s
n
i
u
te
se
h
a
5.
h
03
.
Therefore, h 5.03 sin 67° 4.63 miles. ■
614 CHAPTER 8 Triangle Trigonometry
EXERCISES 8.4
Directions: Standard notation for triangle ABC is used
throughout. Use a calculator and round off your answers to
one decimal place at the end of the computation.
In Exercises 1–8, solve triangle ABC under the given condi-
tions.
1. A 44°, B 22°, a 6
2. B 33°, C 46°, b 4
3. A 110°, C 40°, a 12
4. A 105°, B 27°, b 10
5. B 42°, C 52°, b 6
6. A 67°, C 28°, a 9
7. A 102.3°, B 36.2°, a 16
8. B 93.5°, C 48.5°, b 7
In Exercises 9–32, solve the triangle. The Law of Cosines may
be needed in Exercises 19–32.
9. b 12, c 20, B 70°
10. b 30, c 50, C 60°
11. a 15, b 12, B 20°
12. b 12.5, c 20.1, B 37.3°
13. a 5, c 12, A 102°
14. a 9, b 14, B 95°
15. b 12, c 10, C 56°
16. a 12.4, c 6.2, A 72°
17. A 41°, B 6.7°, a 5
18. a 30, b 40, A 30°
19. b 4, c 10, A 75°
20. a 50, c 80, C 45°
21. a 6, b 12, c 16
22. B 20.67°, C 34°, b 185
23. a 16.5, b 18.2, C 47°
24. a 21, c 15.8, B 71°
25. b 17.2, c 12.4, B 62.5°
26. b 24.1, c 10.5, C 26.3°
27. a 10.1, b 18.2, A 50.7°
28. b 14.6, c 7.8, B 40.4°
29. b 12.2, c 20, A 65°
30. a 44, c 84, C 42.2°
31. A 19°, B 35°, a 110
32. b 15.4, c 19.3, A 42°
33. A surveyor marks points A and B 200 meters apart on one
bank of a river. She sights a point C on the opposite bank
and determines the angles shown in the figure. What is the
distance from A to C?
34. A forest fire is spotted from two fire towers. The triangle de-
termined by the two towers and the fire has angles
of 28° and 37° at the tower vertices. If the towers are
3000 meters apart, which one is closer to the fire?
C
AB
57° 42°