and equip. The new MESA micromachine laboratory at Sandia
National Laboratories costs almost $500 million. Only large cor-
porations and governments can make this kind of capital invest-
ment. Chips must be made in huge quantities with exceptional
quality control to achieve an adequate return on investment.
Because chip-making processes advance so quickly, process equip-
ment is typically depreciated after 2 years.
An integrated circuit is fabricated using only four steps: film
growth and deposition, patterning, etching, and annealing. A
typical process begins by depositing a film, spinning photoresist,
patterning and developing the resist, etching the thin film, and
finally stripping the resist. By repeating these steps over and over,
the most complex devices can be made. This is a gross oversimpli-
fication but it demonstrates how a number of simple steps can be
combined to make very complex devices. In industry, complex
processing tools such as etchers and thin film deposition systems
are dedicated to a single process. Engineers in semiconductor and
micromachine factories devote entire careers to reducing variabil-
ity by characterizing processes and equipment and thus improving
device yield. Even so, scrap rates run up to 50% of all material
started in the line, depending on the maturity of the process.
Mature lines with well-characterized processes will skip testing in
wafer form and package every device made, rejecting the defective
parts at that stage, indicating that well over 99% of all wafers were
processed correctly.
Most modern wafer processing machine tools are ‘‘cassette to
cassette,’’ where all wafers are carried around the facility in specially
designed wafer holders known as cassettes or boats. Humans never
handle wafers. Instead, cassettes are placed into ‘‘indexers’’ that
automatically move the wafers into the process chamber, afterward
returning them to a cassette when the process is finished. Since
humans make mistakes and add defects, they must be removed as
far as possible from the wafers.
Here we must distinguish between the terms ‘‘fab’’ and ‘‘lab.’’
Fab refers to a large, commercial factory set up to turn a profit,
which produces a small variety of integrated circuit devices that
have similar processes. Lab refers to a smaller facility, usually at a
university or government laboratory, set up to produce a wide
variety of electronic, optical, and mechanical devices with many
different processes. Machinery (machine tools or just tools) in a fab
is designed for high throughput (low cost) and must be designed
to minimize the number of particles and defects they add to wafers.
Uptime is a major consideration, and fabs will schedule routine
maintenance into the process. Although programmers who use
chips to create amazing programs get all the glory, the people who
design and build the machines that make the chips are the real
heroes because the semiconductor industry arguably has the high-
est technology machine tools in existence. Creating a 25-mm
2 Chinn