408 References
16. Ermentrout, G. B., and Kopell, N. Oscillator death in systems of coupled
neural oscillators. SIAM J. Appl. Math. 50 (1990), 125.
17. Field, R., and Burger, M., eds. Oscillations and Traveling Waves in Chemical
Systems. New York: Wiley, 1985.
18. Fitzhugh, R. Impulses and physiological states in theoretical models of nerve
membrane. Biophys. J. 1 (1961), 445.
19. Golubitsky, M., Josi´c, K., and Kaper, T. An unfolding theory approach to
bursting in fast-slow systems. In Global Theory of Dynamical Systems. Bristol,
UK: Institute of Physics, 2001, 277.
20. Guckenheimer, J., and Williams, R. F. Structural stability of Lorenz attractors.
Publ. Math. IHES. 50 (1979), 59.
21. Guckenheimer, J., and Holmes, P. Nonlinear Oscillations, Dynamical Systems,
and Bifurcations of Vector Fields. New York: Springer-Verlag, 1983.
22. Gutzwiller, M. The anisotropic Kepler problem in two dimensions. J. Math.
Phys. 14 (1973), 139.
23. Hodgkin, A. L., and Huxley, A. F. A quantitative description of membrane
current and its application to conduction and excitation in nerves. J. Physiol.
117 (1952), 500.
24. Katok, A., and Hasselblatt, B. Introduction to the Modern Theory of Dynamical
Systems. Cambridge, UK: Cambridge University Press, 1995.
25. Khibnik, A., Roose, D., and Chua, L. On periodic orbits and homoclinic
bifurcations in Chua’s circuit with a smooth nonlinearity. Int. J. Bifurcation
and Chaos. 3 (1993), 363.
26. Kraft, R. Chaos, Cantor sets, and hyperbolicity for the logistic maps. Amer.
Math Monthly. 106 (1999), 400.
27. Lengyel, I., Rabai, G., and Epstein, I. Experimental and modeling study of
oscillations in the chlorine dioxide–iodine–malonic acid reaction. J. Amer.
Chem. Soc. 112 (1990), 9104.
28. Liapunov, A. M. The General Problem of Stability of Motion. London: Taylor
& Francis, 1992.
29. Lorenz, E. Deterministic nonperiodic flow. J. Atmos. Sci. 20 (1963), 130.
30. Marsden, J. E., and McCracken, M. The Hopf Bifurcation and Its Applications.
New York: Springer-Verlag, 1976.
31. May, R. M. Theoretical Ecology: Principles and Applications. Oxford: Blackwell,
1981.
32. McGehee, R. Triple collision in the collinear three body problem. Inventiones
Math. 27 (1974), 191.
33. Moeckel, R. Chaotic dynamics near triple collision. Arch. Rational Mech. Anal.
107 (1989), 37.
34. Murray, J. D. Mathematical Biology. Berlin: Springer-Verlag, 1993.
35. Nagumo, J. S., Arimoto, S., and Yoshizawa, S. An active pulse transmission
line stimulating nerve axon. Proc. IRE. 50 (1962), 2061.
36. Robinson, C. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos.
Boca Raton, FL: CRC Press, 1995.
37. Rössler, O. E. An equation for continuous chaos. Phys. Lett. A 57
(1976), 397.