CONTENTS xxi
24.6.3 The Inhomogeneous Case . . . . . . . . . . . . . . . . . 583
24.7Problems ..............................587
25 Laplace’s Equation: Cartesian Coordinates 591
25.1UniquenessofSolutions ......................592
25.2CartesianCoordinates .......................594
25.3Problems ..............................603
26 Laplace’s Equation: Spherical Coordinates 607
26.1FrobeniusMethod .........................608
26.2LegendrePolynomials .......................610
26.3 Second Solution of the Legendre DE . . . . . . . . . . . . . . . 617
26.4CompleteSolution .........................619
26.5 Properties of Legendre Polynomials . . . . . . . . . . . . . . . . 622
26.5.1 Parity............................622
26.5.2 Recurrence Relation . . . . . . . . . . . . . . . . . . . . 622
26.5.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . 624
26.5.4 RodriguesFormula.....................626
26.6 Expansions in Legendre Polynomials . . . . . . . . . . . . . . . 628
26.7PhysicalExamples .........................631
26.8Problems ..............................635
27 Laplace’s Equation: Cylindrical Coordinates 639
27.1TheODEs..............................639
27.2 Solutions of the Bessel DE . . . . . . . . . . . . . . . . . . . . . 642
27.3 Second Solution of the Bessel DE . . . . . . . . . . . . . . . . . 645
27.4 Properties of the Bessel Functions . . . . . . . . . . . . . . . . 646
27.4.1 Negative Integer Order . . . . . . . . . . . . . . . . . . . 646
27.4.2 Recurrence Relations . . . . . . . . . . . . . . . . . . . . 646
27.4.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . 647
27.4.4 Generating Function . . . . . . . . . . . . . . . . . . . . 649
27.5 Expansions in Bessel Functions . . . . . . . . . . . . . . . . . . 653
27.6PhysicalExamples .........................654
27.7Problems ..............................657
28 Other PDEs of Mathematical Physics 661
28.1TheHeatEquation.........................661
28.1.1 Heat-Conducting Rod . . . . . . . . . . . . . . . . . . . 662
28.1.2 Heat Conduction in a Rectangular Plate . . . . . . . . . 663
28.1.3 Heat Conduction in a Circular Plate . . . . . . . . . . . 664
28.2 The Schr¨odingerEquation.....................666
28.2.1 Quantum Harmonic Oscillator . . . . . . . . . . . . . . 667
28.2.2 QuantumParticleinaBox ................675
28.2.3 Hydrogen Atom . . . . . . . . . . . . . . . . . . . . . . 677
28.3TheWaveEquation ........................680
28.3.1 GuidedWaves .......................682