
210 CHAPTER 8. LONGITUDINAL ELECTRIC FIELD
one has and according to (8.76), the increment of instability has a finite value.
This means that instability starts at values of somewhat smaller than (8.79) when
(8.76) equals zero. Since at this instability point
the instability-causing, threshold value of is:
There was an to use this mechanism to explain nonequilibrium phenom-
ena in tunnel junctions. In Ref. 23 it was suggested that this instability should be
exploited to elaborate the new principle of a three-terminal (transistor) device. We
will not consider these practical implications in more detail here.
References
1. M. Tinkham, Tunneling generation, relaxation and tunneling detection of hole-electron imbalance
in superconductors, Phys. Rev. B 6(5), 1747–1756 (1972).
2. G. J. Pethick and H. Smith, Charge imbalance in nonequilibrium superconductors, J. Phys. C:
Solid State Phys. 13
,
6313–6347 (1980).
3. T. J. Rieger, D. J. Scalapino, and J. E. Mercereau, Charge conservation and chemical potentials in
time-dependent Ginzburg–Landau theory, Phys. Rev. Lett. 27(26), 1787–1790 (1971).
4. A. F. Volkov, Theory of the current-voltage characteristics of one-dimensional S-N-S and S-N-
junctions,
Sov
. Phys. JETP
39(2),
366–369 (1974)
[
Zh. Eksp. i Teor. Fiz. 66(2), 758–765 (1974)].
5. N. N. Bogolyubov, V. V. Tolmachov, and D. V. Shirkov, A New Method in the Theory of
Superconductivity
,
pp. 31–99, Consultants Bureau, New York (1959).
6. P. W. Anderson, Coherent excited states in the theory of superconductivity: Gauge invariance and
the Meissner effect, Phys. Rev. 110(4), 827–835 (1958).
7. P. W. Anderson, Random-phase approximation in the theory of superconductivity, Phys. Rev.
112(6), 1900–1916(1958).
8. I. M. Khalatnikov, An Introduction to the Theory of Superfluidity, pp. 72–77, W. A. Benjamin,
New York (1965).
9. V. L. Ginzburg, Second sound, the convective heat transfer mechanism, and exciton excitations in
superconductors, Sov. Phys. JETP 14(3), 594–598 (1962)
[
Zh. Eksp. i Teor. Fiz. 41[3(9)], 828–834
(1961)].
10. J. Bardeen, Two-fluid model of superconductivity, Phys. Rev. Lett. 1(2), 399–402 (1958).
11. A. V. Carlson and A. M. Goldman, Superconducting order parameter fluctuations below Phys.
Rev. Lett. 31(5), 880–882 (1973).
12. A. Schmid, in Nonequilibrium Superconductivity, Phonons and Kapitza Boundaries
,
K. E. Gray,
ed., pp. 423–480, Plenum, New York (1981).
13. G. Schön, in Nonequilibrium Superconductivity
,
D. N. Langenberg and A. I. Larkin, eds., pp.
589–641, North-Holland, Amsterdam (1985).
14. E. E. Salpeter and H. A. Bethe, A relativistic equation for the bound state problem, Phys. Rev.
84(6), 1232–1242(1951).
15. V. B. Berestezkii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, pp. 317–454,
Pergamon, Oxford (1982).