624. M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. McLean, S.R. Lustig, R.E. Richardson, and
N.G. Tassi, DNA-assisted dispersion and separation of carbon nanotubes, Nat. Mater. 2, 338–342 (2003).
625. J.N. Barisci, M. Tahhan, G.G. Wallace, S. Badaire, T. Vaugien, M. Maugey, and P. Poulin, Properties
of carbon nanotube fibers spun from DNA-stabilized dispersions, Adv. Funct. Mater. 14, 133–138
(2004).
626. H. Xin and A.T. Woolley, DNA-templated nanotube localization, J. Am. Chem. Soc. 125, 8710–8711
(2003).
627. K. Keren, R.S. Berman, E. Buchstab, U. Sivan, and E. Braun, DNA-templated carbon nanotube field-
effect transistor, Science 302, 1380–1382 (2003).
628. C. Dwyer, M. Guthold, M. Falvo, S. Washburn, R. Superfine, and D. Erie, DNA-functionalized
single-walled carbon nanotubes, Nanotechnology 13, 601–604 (2002).
629. R. Czerw, M. Terrones, J.-C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones,
D. Tekleab, P.M. Ajayan, W. Blau, M. Rühle, and D.L. Carroll, Identification of electron donor states
in N-doped carbon nanotubes, Nano Lett. 1, 457–460 (2001).
630. M. Terrones, N. Grobert, M. Terrones, H. Terrones, P.M. Ajayan, F. Banhart, X. Blase, D.L. Carroll, R.
Czerw, B. Foley, J.C. Charlier, B. Foley, R. Kamalakaran, P.H. Kohler-Redlich, M. Rühle, and
T. Seeger, Doping and connecting carbon nanotubes, Mol. Cryst. Liq. Cryst. 387, 51–62 (2002).
631. A.H. Nevidomskyy, G. Csányi, and M.C. Payne, Chemically active substitutional nitrogen impurity in
carbon nanotubes, Phys. Rev. Lett. 91, 105502-1–4 (2003).
632. Y. Huang, J. Gao, and R. Liu, Structure and electronic properties of nitrogen-containing carbon nan-
otubes, Synth. Met. 113, 251–255 (2000).
633. R. Droppa Jr., P. Hammer, A.C.M. Carvalho, M.C. dos Santos, and F. Alvarez, Incorporation of nitro-
gen in carbon nanotubes, J. Non-Cryst. Solids 299–302, 874–879 (2002).
634. M. Glerup, J. Steinmetz, D. Samaille, O. Stéphan, S. Enouz, A. Loiseau, S. Roth, and P. Bernier,
Synthesis of N-doped SWNT using the arc-discharge procedure, Chem. Phys. Lett. 387, 193–197 (2004).
635. R. Sen, B.C. Satishkumar, A. Govindaraj, K.R. Harikumar, G. Raina, J.-P. Zhang, A.K. Cheetham, and
C.N.R. Rao, B–C–N, C–N and B–N nanotubes produced by the pyrolysis of precursor molecules over
Co catalysts, Chem. Phys. Lett. 287, 671–676 (1998).
636. K. Suenaga, M. Yudasaka, C. Colliex, and S. Iijima, Radially modulated nitrogen distribution in CN
x
nan-
otubular structures prepared by CVD using Ni phtalocyanine, Chem. Phys. Lett. 316, 365–372 (2000).
637. R. Kurt and A. Karimi, Influence of nitrogen on the growth mechanism of decorated C:N nanotubes,
Chem. Phys. Chem. 2, 388–392 (2001).
638. R. Kurt, J.-M. Bonard, and A. Karimi, Structure and field emission properties of decorated C/N nan-
otubes tuned by diameter variations, Thin Solid Films 398–399, 193–198 (2001).
639. R. Kurt, C. Klinke, J.-M. Bonard, K. Kern, and A. Karimi, Tailoring the diameter of decorated C–N
nanotubes by temperature variations using HF-CVD, Carbon 39, 2163–2172 (2001).
640. M. Terrones, P.M. Ajayan, F. Banhart, X. Blase, D.L. Carroll, J.C. Charlier, R. Czerw, B. Foley,
N. Grot, R. Kamalakaran, P. Kohler-Redlich, M. Rühle, T. Seeger, and H. Terrones, N-doping and coa-
lescence of carbon nanotubes: synthesis and electronic properties, Appl. Phys. A 74, 355–361 (2002).
641. X. Wang, Y. Liu, D. Zhu, L. Zhang, H. Ma, N. Yao, and B. Zhang, Controllable growth, structure, and
low field emission of well-aligned CN
x
nanotubes, J. Phys. Chem. B 106, 2186–2190 (2002).
642. C.J. Lee, S.C. Lyu, H.-W. Kim, J.H. Lee, and K.I. Cho, Synthesis of bamboo-shaped carbon-nitrogen
nanotubes using C
2
H
2
–NH
3
–Fe(CO)
5
system, Chem. Phys. Lett. 359, 115–120 (2002).
643. T.-Y. Kim, K.-R. Lee, K.Y. Eun, and K.-H. Oh, Carbon nanotube growth enhanced by nitrogen incor-
poration, Appl. Phys. Lett. 372, 603–607 (2003).
644. H. Yan, Q. Li, J. Zhang, and Z. Liu, The effect of hydrogen on the formation of nitrogen-doped carbon
nanotubes via catalytic pyrolysis of acetonitrile, Adv. Nanomat. Nanodevices (8th International
Conference on Electronic Materials, IUMRS-ICEM 2002, Xi’an, China, June 10–14, 2002), preprint
[http://nanotechweb.org/dl/nanomaterials/Xian_article_01_was153468.pdf].
645. H. Yan, Q. Li, J. Zhang, and Z. Liu, The effect of hydrogen on the formation of nitrogen-doped carbon
nanotubes via catalytic pyrolysis of acetonitrile, Chem. Phys. Lett. 380, 347–351 (2003).
646. C.H. Lin, H.L. Chang, C.M. Hsu, A.Y. Lo, and C.T. Kuo, The role of nitrogen in carbon nanotube for-
mation, Diamond Rel. Mater. 12, 1851–1857 (2003).
647. V.D. Blank, E.V. Polyakov, D.V. Batov, B.A. Kulnitskiy, U. Bangert, A. Gutiérrez-Sosa, A.J. Harvey,
and A. Seepujak, Formation of N-containing C-nanotubes and nanofibres by carbon resistive heating
under high nitrogen pressure, Diamond Rel. Mater. 12, 864–869 (2003).
Chemistry of Carbon Nanotubes 103