Contents
ix
5.6
Piecewise polynomials
and the
finite
element method
188
5.6.1 Examples using piecewise linear
finite
elements
. . . 193
5.6.2
Inhomogeneous Dirichlet conditions
197
5.7
Green's
functions
for
BVPs
202
5.7.1
The
Green's
function
and the
inverse
of a
differential
operator
207
5.8
Suggestions
for
further
reading
210
6
Heat
flow and
diffusion
211
6.1
Fourier series methods
for the
heat
equation
211
6.1.1
The
homogeneous
heat
equation
214
6.1.2 Nondimensionalization
217
6.1.3
The
inhomogeneous
heat
equation
220
6.1.4 Inhomogeneous boundary conditions
222
6.1.5
Steady-state
heat
flow and
diffusion
224
6.1.6 Separation
of
variables
225
6.2
Pure Neumann conditions
and the
Fourier cosine series
229
6.2.1
One end
insulated; mixed boundary conditions
. . . 229
6.2.2
Both ends insulated; Neumann boundary conditions
231
6.2.3
Pure Neumann conditions
in a
steady-state
BVP . . 237
6.3
Periodic boundary conditions
and the
full
Fourier series
245
6.3.1 Eigenpairs
of
—
-j^
under periodic boundary conditions247
6.3.2 Solving
the BVP
using
the
full
Fourier series ....
249
6.3.3 Solving
the
IBVP using
the
full
Fourier series ....
252
6.4
Finite
element methods
for the
heat
equation
256
6.4.1
The
method
of
lines
for the
heat equation
260
6.5
Finite
elements
and
Neumann conditions
266
6.5.1
The
weak
form
of a BVP
with Neumann conditions
266
6.5.2
Equivalence
of the
strong
and
weak
forms
of a BVP
with
Neumann conditions
267
6.5.3 Piecewise linear
finite
elements with Neumann con-
ditions
269
6.5.4
Inhomogeneous Neumann conditions
273
6.5.5
The finite
element
method
for an
IBVP
with Neu-
mann conditions
274
6.6
Green's
functions
for the
heat
equation
279
6.6.1
The
Green's
function
for the
one-dimensional
heat
equation under Dirichlet conditions
280
6.6.2
Green's functions under other boundary conditions
. 281
6.7
Suggestions
for
further
reading
283
7
Waves
285
7.1 The
homogeneous wave equation without boundaries
285
7.2
Fourier series methods
for the
wave equation
291
7.2.1 Fourier series solutions
of the
homogeneous wave
equation
293
Contents
IX
6
5.6 Piecewise polynomials
and
the
finite element method . . . 188
5.6.1 Examples using piecewise linear finite elements 193
5.6.2 Inhomogeneous Dirichlet conditions
..
. . . . 197
5.7 Green's functions for
BVPs.
. . . . . . . . . . . . . . . . . 202
5.7.1
The
Green's function
and
the
inverse of a differential
operator.
. . . . . . 207
5.8 Suggestions for further
reading.
210
Heat
flow
and
diffusion
6.1 Fourier series methods for the heat equation
6.1.1
The
homogeneous heat equation
6.1.2 Nondimensionalization
.....
.
211
211
214
217
6.1.3
The
inhomogeneous heat equation 220
6.1.4 Inhomogeneous boundary conditions
222
6.1.5 Steady-state heat
flow
and
diffusion 224
6.1.6 Separation of variables. . . . . . . .
225
6.2
Pure
Neumann conditions and
the
Fourier cosine series 229
6.2.1 One end insulated; mixed boundary conditions 229
6.2.2 Both ends insulated; Neumann boundary conditions
231
6.2.3
Pure
Neumann conditions in a steady-state
BVP
. . 237
6.3 Periodic boundary conditions
and
the
full Fourier series . . . . .
245
6.3.1 Eigenpairs of -
-/l;x
under periodic boundary conditions247
6.3.2 Solving
the
BVP
using
the
full Fourier series . 249
6.3.3 Solving
the
IBVP using
the
full Fourier series . 252
6.4 Finite element methods for
the
heat equation 256
6.4.1
The
method of lines for
the
heat
equation.
. .
260
6.5 Finite elements
and
Neumann conditions . . . . . . . . . .
266
6.5.1
The
weak form of a BVP with Neumann conditions
266
6.5.2 Equivalence of
the
strong
and
weak forms of a
BVP
with Neumann conditions
...............
267
6.5.3 Piecewise linear finite elements with Neumann con-
ditions.
. . . . . . . . . . . . . . . . . . . . . . . . .
269
6.5.4 Inhomogeneous Neumann conditions
.........
273
6.5.5
The
finite element method for
an
IBVP
with Neu-
mann
conditions . . . . . . . . . . . . . . . . . . . . 274
6.6 Green's functions for
the
heat equation . . . . . . . . . . . . . .
279
6.6.1
The
Green's function for
the
one-dimensional heat
equation under Dirichlet conditions
.........
280
6.6.2 Green's functions under other boundary
conditions.
281
6.7 Suggestions for further
reading.
. . . . . . . . . . . . . . . . . .
283
7 VVaves
285
7.1
The
homogeneous wave equation without boundaries
......
285
7.2 Fourier series methods for
the
wave equation
...........
291
7.2.1 Fourier series solutions of
the
homogeneous wave
equation.
. . . . . . . . . . . . . . . . . . . . . . . . 293