
Numerical Experiments 153
TABLE 6.26: Numerical
results for finite differences method
with spatial dependent parameters
and a Dirichlet boundary (error of
the reference solution).
η err
L
1
u
exact
u
num
0.0 0.0032 −0.7251 −0.7154
0.1 0.0034 −0.7251 −0.7149
0.3 0.0037 −0.7251 −0.7139
0.5 0.0040 −0.7251 −0.7129
TABLE 6.27: Numerical
results for classical
operator-splitting method with
spatial dependent parameters and a
Dirichlet boundary (error of the
reference solution).
η err
L
1
u
exact
u
num
0.0 0.0032 −0.7251 −0.7154
0.1 0.0034 −0.7251 −0.7149
0.3 0.0037 −0.7251 −0.7139
0.5 0.0040 −0.7251 −0.7129
TABLE 6.28: Numerical results for
LOD method with spatial dependent
parameters and a Dirichlet boundary (error
of the reference solution).
η err
L
1
u
exact
u
num
0.00 0.0032 −0.7251 −0.7154
0.1 0.7809e-003 −0.7251 −0.7226
0.122 0.6793e-003 −0.7251 −0.7242
0.3 0.0047 −0.7251 −0.7369
0.5 0.0100 −0.7251 −0.7512
same improvement for the Neumann case to reach higher order can be done
with the LOD method, see [104].
REMARK 6.11 In our experiments, we have analyzed both the clas-
sical operator splitting and the LOD method, and showed that the LOD
© 2009 by Taylor & Francis Group, LLC