492 Exact Solutions and Invariant Subspaces
[575] G.B. Whitham, Linear and Nonlinear Waves, Wiley Interscience, New York, 1974.
[576] T.P. Witelski, A.J. Bernoff, and A.L. Bertozzi, Blow-up and dissipation in a critical-
case unstable thin film equation, European J. Appl. Math., 15 (2004), 223–256.
[577] L.-F. Wu, The Ricci flow on complete IR
2
, Commun. Anal. Geom., 1 (1993), 439–472.
[578] Z. Wu, J. Zhao, J. Yin, and H. Li, Nonlinear Diffusion Equations, World Scientific
Publ. Co., Inc., River Edge, NJ, 2001.
[579] Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Commun.
Pure Appl. Math., 53 (2000), 1411–1433.
[580] Z. Yan, Constructing exact solutions for two-dimensional nonlinear dispersion Boussi-
nesq equation. II, Chaos, Solitons Fractals, 18 (2003), 869–880.
[581] Z. Yan and G. Bluman, New compacton solutions and solitary patterns solutions of
nonlinearly dispersive Boussinesq equations, Comp. Physics Commun., 149 (2002),
1–18.
[582] N.N. Yanenko, The compatability theory and methods of integration of systems of
nonlinear partial differential equations, In: Proceedings of All-Union Math. Congress,
Vo l. 2, Nauka, Leningrad, 1964, pp. 613–621 (in Russian).
[583] R.-X. Yao and Z.-B. Li, Conservation laws and new exact solutions for the generalized
seventh order KdV equation, Chaos, Solitons Fractals, 20 (2004), 259–266.
[584] Y. Yao, New type of exact solutions of nonlinear evolution equations via the new Sine–
Poisson equation expansion method, Chaos, Solitons Fractals, 26 (2005), 1081–1086.
[585] M. Yoshino, Global solvability of Monge-Amp`ere type equations, Commun. Part. Dif-
fer. Equat., 25 (2000), 1925–1950.
[586] S.-J. Yu, K. Toda, and T. Fukuyama, N-soliton solutions to a (2+1)-dimensional inte-
grable equation, J. Phys. A, 31 (1998), 10181–10186.
[587] E.A. Zabolotskaya and R.V. Khohlov, Quasi-plane waves in the nonlinear acoustic
confined beams, Soviet Phys. Acoustics, 15 (1969), 35–40.
[588] E.A. Zabolotskaya and R.V. Khohlov, Convergent and divergent sound beams in non-
linear media, Soviet Phys. Acoustics, 16 (1970), 39–43.
[589] N.J. Zabusky, Exact solution for the vibrations of a nonlinear continuous model string,
J. Math. Phys., 3 (1962), 1028–1039.
[590] N.J. Zabusky and M.D. Kruskal, Interaction of solitons in a collisionless plasma and
the recurrence of initial states, Phys. Rev. Lett., 15 (1965), 240–243.
[591] V.E. Zakharov and E.A. Kuznetsov, On three-dimensional solitons, Sov. Phys. JETP,
39 (1974), 285–286.
[592] R.Z. Zhdanov, Conditional Lie-B¨acklund symmetry and reduction of evolution equa-
tions, J. Phys. A, 28 (1995), 3841–3850.
[593] R.Z. Zhdanov, Higher conditional symmetry and reduction of initial value problems,
Nonlinear Dynam., 28 (2002), 17–27.
[594] Ya.B. Zel’dovich, G.I. Barenblatt, V.B. Librovich, and G.M. Makhviladze, The Math-
ematical Theory of Combustion and Explosions, Consultants Bureau [Plenum], New
York, 1985.
[595] A.I. Zenchuk, On the construction of particular solutions to (1+1)-dimensional partial
differential equations, J. Phys. A, 35 (2002), 1791–1803.
[596] S.-L. Zhang and S.-Y. Lou, Derivative-dependent functional separable solutions for
the KdV-type equations, Phys. A, 335 (2004), 430–444.
[597] S.-L. Zhang, S.-Y. Lou, and C.-Z. Qu, New variable separation approach: application
to nonlinear diffusion equations, J. Phys. A, 36 (2003), 1223–1242.
[598] S.-L. Zhang, S.-Y. Lou, and C.-Z. Qu, Functional variable separation for extended
(1+2)-dimensional nonlinear wave equations, Chin. Phys. Lett., 22 (2005), 2731–2734.
© 2007 by Taylor & Francis Group, LLC