474 Exact Solutions and Invariant Subspaces
[154] J. Drach, Sur l’int´egration par quadratures de l’´equation diff´erentielle
d
2
y
dx
2
= [ϕ(x) +
h]y, C. R. Acad. Sci. Paris, 168 (1919), 337–340.
[155] B.R.Duffy and H.K. Moffatt, A similarity solution for viscous source flowon a vertical
plane, European J. Appl. Math., 8 (1997), 37–47.
[156] Yu.A. Dubinskii, Analytic Pseudo-Differential Operators and their Applications,
Math. and Appl. (Soviet Ser.), 68, Kluver Acad. Publ. Group, Dordrecht, 1991.
[157] B.A. Dubrovin, Geometry of 2D Topological Field Theories, Lect. Notes in Math., Vol.
1620, Springer, Berlin, 1996, pp. 120–348.
[158] M. Dunaiski, A class of Einstein–Weyl spaces associated to an integrable system of
hydrodynamic type, J. Geom. Phys., 51 (2004), 126–137.
[159] Y. Ebihara, H. Fukuda, and M. Kurokiba, On degenerate parabolic equations with
quadratic convection, Fukuoka Univ. Sci. Rep., 26 (1996), 79–87.
[160] Y. Ebihara and J. Kameda, On quasilinear bidegenerate parabolic equations, Math.
Appl. Comput., 14 (1995), 3-1–315.
[161] Y. Ebihara and T. Kitada,On the behavior of explicit solutions of quasilinear
hyperbolic-elliptic equations with convective term, Adv. Math. Sci. Appl., 7 (1997),
225–243.
[162] Y. Ebihara, T. Kitada, and M. Kurokiba, Explicit solutions of quasilinear hyperbolic-
elliptic equations with quadratic nonlinear terms, Fukuoka Univ. Sci. Rep., 24 (1994),
39–48.
[163] Yu.V. Egorov, V.A. Galaktionov, V.A. Kondratiev, and S.I. Pohozaev, Global solutions
of higher-order semilinear parabolic equations in the supercritical range, Adv. Differ.
Equat., 9 (2004), 1009–1038.
[164] S.D. Eidelman, Parabolic Systems, North-Holland Publ. Co., Amsterdam, 1969.
[165] J.C. Eilbeck and V.Z. Enolskii, Bilinear operators and the power series for the Wier-
strass σ function, J. Phys. A, 33 (2000), 791–794.
[166] J.C. Eilbeck, V.Z. Enolskii, and H. Holden, The hyperelliptic ζ -function and the in-
tegrable massive Thirring model, Roy. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.,
459 (2003), 1581–1610.
[167] C.M. Elliott and H. Garcke, On the Cahn–Hilliard equation with degenerate mobility,
SIAM J. Math. Anal., 27 (1996), 404–423.
[168] R. Emden, Gaskugeln, Anwendungen der mechanischen Warmentheorie auf Kosmolo-
gie und meteorologische Probleme, Chap. XII, Teubner, Leipzig, 1907.
[169] A. Enneper,
¨
Uber asymptotische Linien, Nachr. K¨onigl. Gesellsch. d. Wissenschaften
G¨ottingen, 1870, pp. 493–511.
[170] V.P. Ermakov, Differential equations of second order. Conditions of integrability in
final form, Izvestiya Kievskogo Univ. III, 9 (1880), 1–25 (in Russian).
[171] F.J. Ernst, New formulation of the axially symmetric gravitational field problem, Phys.
Rev., 167 (1968), 1175–1178.
[172] P.G. Est´evez and C.-Z. Qu, Separation of variables in nonlinear wave equations with
variable wave speed, Theoret. Math. Phys., 133 (2002), 1490–1497.
[173] P.G. Est´evez, C. Qu, and S. Zhang, Separation of variables of a generalized porous
medium equation with nonlinear source, J. Math. Anal. Appl., 275 (2002), 44–59.
[174] J.D. Evans, V.A. Galaktionov, and J.R. King, Source-type solutions of the fourth-order
unstable thin film equation, European J. Appl. Math., to appear.
[175] J.D. Evans, V.A. Galaktionov, and J.R. King, Unstable sixth-order thin film equation.
I. Blow-up similarity solutions; II. Global similarity patterns, Nonlinearity, submitted.
[176] J.D. Evans, J.R. King, and A.B. Tayler, Finite length mask effects in the isolation
oxidation of silicon, IMA J. Appl. Math., 58 (1997), 121–146.
© 2007 by Taylor & Francis Group, LLC