468 Exact Solutions and Invariant Subspaces
[19] C. Athorne, J.C. Eilbeck, and V.Z. Enolskii, Identities for the classical genus two ℘
function, J. Geom. Phys., 48 (2003), 354–368.
[20] C. Athorne, J.C. Eilbeck, and V.Z. Enolskii, A SL(2) covariant theory of genus 2 hy-
perelliptic functions, Math. Proc. Cambidge Philos. Soc., 136 (2004), 269–286.
[21] Yu.Yu. Bagderina and A.P. Chupakhin, Invariant and partially invariant solutions of
the Green–Naghdi equations, J. Appl. Mech. Techn. Phys., 46 (2005), 791–799.
[22] H.F. Baker, On a system of differential equations leading to periodic functions, Acta
Math., 27 (1903), 135–156.
[23] M.I. Bakirova and V.A. Dorodnitsyn, An invariant difference model for the equation
u
t
= u
xx
+ δu lnu, Differ. Equat., 30 (1994), 1565–1570.
[24] J. Bao, J. Chen, B. Guan, and M. Ji, Liouville property and regularity of a Hessian
quotient equation, Amer. J. Math., 125 (2003), 301–316.
[25] G.I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics, With a fore-
word by Ya.B. Zeldovich, Cambridge Univ. Press, Cambridge, 1996.
[26] G.I. Barenblatt, Self-similar turbulence propagation from an instantaneous plane
source, In: Nonl. Dynam. Turbulence, G.I. Barenblatt, G. Iooss and D.D. Joseph, Eds,
Pitman, Boston, MA, 1983, pp. 48–60.
[27] G.I. Barenblatt, N.L. Galerkina, and M.V. Luneva, Evolution of a turbulent burst,
Inzhenerno-Fizicheskii Zh., 53 (1987), 733–740 (in Russian).
[28] G.I. Barenblatt and Ya.B. Zel’dovich, On dipole-type solutions in problems of nonsta-
tionary filtration of gas under polytropic regime, Prikl. Mat. Meh., 21 (1957), 718–720
(in Russian).
[29] G.K. Batchelor, An Introduction to Fluid Dynamics, Second Edition, Cambridge Univ.
Press, Cambridge, 1999.
[30] R. Beals, D.H. Sattinger, and J. Szmigielski, Acoustic scattering and the extended
Korteweg-de Vries hierarchy, Adv. Math., 140 (1998), 190–206.
[31] R. Beals, D.H. Sattinger, and J. Szmigielski, Multipeakons and the classical moment
problem, Adv. Math., 154 (2000), 229–257.
[32] R. Beals, D.H. Sattinger, and J. Szmigielski, Continued fractions and integrable sys-
tems, J. Comput. Appl. Math., 153 (2003), 47–60.
[33] J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Appl.
Math. Sci., 83, Springer-Verlag, New York, 1989.
[34] J. Becker and G. Gr¨un, The thin-film equation: recent advances and some new per-
spectives, J. Phys.: Condens. Matter, 17 (2005), S291–S307.
[35] E.D. Belokolos, A.I. Bobenko, V.Z. Enolskii, A.R. Its, and V.B. Matveev, Algebro-
Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994.
[36] E.D. Belokolos and V.Z. Enolskii, Reduction of abelian functions and algebraically
integrable systems. I, II, J. Math. Sci. (New York), 106 (2001), 3395–3486; 108 (2002),
295–374.
[37] Ph. B´enilan and M. Crandall, The continuous dependence on ϕ of solutions of u
t
−
ϕ(u) = 0, Indiana Univ. Math. J., 30 (1981), 161–177.
[38] T.B. Benjamin, J.L. Bona, and J.J. Mahoney, Model equations for long waves in non-
linear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47–78.
[39] D.J. Benney, Long waves on liquid films, J. Math. and Phys., 45 (1966), 150–155.
[40] D.J. Benney and J.C. Luke, On the interactions of permanent wavesof finiteamplitude,
J. Math. Phys., 43 (1964), 309–313.
[41] M. Berger, Nonlinearity and Functional Analysis, Acad. Press, New York, 1977.
[42] R. Berker, Int´egration des ´equations du mouvement d’un fluide visqueux incompress-
ible, Handbuch der Physik, 8 (1963), 1–384; Springer, Berlin.
© 2007 by Taylor & Francis Group, LLC