62 CHAPTER 2 Transformers
the induced voltage is
d~p
el = N1 ~ -- coNl~bmax
coswt (2.4)
where q~max is the maximum value of the flux and co = 2:r f, the frequency being
f Hz. For the current and voltage reference directions shown in Fig. 2.4, the induced
emf leads the flux by 90 °. The rms value of the induced emf el is
2zr
E1 : ~fNl~bmax : ~/27rfNlqbmax
(2.5)
If the resistive voltage drop is negligible, the counter emf equals the applied
voltage. Under these conditions, if a sinusoidal voltage is applied to a winding, a
sinusoidally varying core flux must be established whose maximum value CPmax satis-
fies the requirement that E1 in Eq. 2.5 equal the rms value V1 of the applied voltage;
thus
Vl
~bmax - (2.6)
Under these conditions, the core flux is determined solely by the applied voltage,
its frequency, and the number of turns in the winding. This important relation applies
not only to transformers but also to any device operated with a sinusoidally-alternating
impressed voltage, as long as the resistance and leakage-inductance voltage drops are
negligible. The core flux is fixed by the applied voltage, and the required exciting
current is determined by the magnetic properties of the core; the exciting current must
adjust itself so as to produce the mmf required to create the flux demanded by Eq. 2.6.
Because of the nonlinear magnetic properties of iron, the waveform of the exciting
current differs from the waveform of the flux. A curve of the exciting current as a
function of time can be found graphically from the ac hysteresis loop, as is discussed
in Section 1.4 and shown in Fig. 1.11.
If the exciting current is analyzed by Fourier-series methods, it is found to consist
of a fundamental component and a series of odd harmonics. The fundamental com-
ponent can, in turn, be resolved into two components, one in phase with the counter
emf and the other lagging the counter emf by 90 °. The in-phase component supplies
the power absorbed by hysteresis and eddy-current losses in the core. It is referred
to as
core-loss component
of the exciting current. When the core-loss component is
subtracted from the total exciting current, the remainder is called the
magnetizing
current.
It comprises a fundamental component lagging the counter emf by 90 °, to-
gether with all the harmonics. The principal harmonic is the third. For typical power
transformers, the third harmonic usually is about 40 percent of the exciting current.
Except in problems concerned directly with the effects of harmonic currents,
the peculiarities of the exciting-current waveform usually need not be taken into
account, because the exciting current itself is small, especially in large transformers.
For example, the exciting current of a typical power transformer is about 1 to 2 percent
of full-load current. Consequently the effects of the harmonics usually are swamped