mikos: “9026_c029” — 2007/4/9 — 15:53 — page 18 — #18
29-18 Tissue Engineering
References
[1] Cilento, B.G., Freeman, M.R., Schneck, F.X., Retik, A.B., and Atala, A. Phenotypic and cytogenetic
characterization of human bladder urothelia expanded in vitro. J. Urol. 1994; 152: 655.
[2] Scriven, S.D., Booth, C., Thomas, D.F., Trejdosiewicz, L.K., and Southgate, J. Reconstitution of
human urothelium from monolayer cultures. J. Urol. 1997; 158: 1147–52.
[3] Liebert, M., Hubbel, A., Chung, M., Wedemeyer, G., Lomax, M.I., Hegeman, A., Yuan, T.Y.,
Brozovich, M., Wheelock, M.J., and Grossman, H.B. Expression of mal is associated with urothelial
differentiation in vitro: identification by differential display reverse-transcriptase polymerase chain
reaction. Differentiation 1997; 61: 177–85.
[4] Puthenveettil, J.A., Burger, M.S., and Reznikoff, C.A. Replicative senescence in human uroepithelial
cells. Adv. Exp. Med. Biol. 1999; 462: 83–91.
[5] Fauza, D.O., Fishman, S., Mehegan, K., and Atala, A. Videofetoscopically assisted fetal tissue
engineering: bladder augmentation. J. Ped. Surg. 1998; 33: 7–12.
[6] Liebert, M., Wedemeyer, G., Abruzzo, L.V., Kunkel, S.L., Hammerberg, C., Cooper, K.D., and
Grossman, H.B. Stimulated urothelial cells produce cytokines and express an activated cell surface
antigenic phenotype. Semin. Urol. 1991; 9: 124–30.
[7] Tobin, M.S., Freeman, M.R., and Atala, A. Maturational response of normal human urothelial
cells in culture is dependent on extracellular matrix and serum additives. Surgical Forum 1994;
45: 786.
[8] Freeman, M.R., Yoo, J.J., Raab, G., Soker, S., Adam, R.M., Schneck, F.X., Renshaw, A.A.,
Klagsbrun, M., and Atala, A. Heparin-binding EGF-like growth factor is an autocrine factor
for human urothelial cells and is synthesized by epithelial and smooth muscle cells in the human
bladder. J. Clin. Invest. 1997; 99: 1028.
[9] Nguyen, H.T., Park, J.M., Peters, C.A., Adam, R.A., Orsola, A., Atala, A., and Freeman, M.R.
Cell-specific activation of the HB-EGF and ErbB1 genes by stretch in primary human bladder
cells. InVitroCellDev.Biol.1999; 35: 371–375.
[10] Harriss, D.R. Smooth muscle cell culture: a new approach to the study of human detrusor
physiology and pathophysiology. Br.J.Urol.1995; 75(Suppl 1): 18–26.
[11] Solomon, L.Z., Jennings, A.M., Sharpe, P., Cooper, A.J., and Malone, P.S. Effects of short-chain fatty
acids on primary urothelial cells in culture: implications for intravesical use in enterocystoplasties.
J. Lab. Clin. Med. 1998; 132: 279–83.
[12] Lobban, E.D., Smith, B.A., Hall, G.D., Harnden, P., Roberts, P., Selby, P.J., Trejdosiewicz, L.K.,
and Southgate, J. Uroplakin gene expression by normal and neoplastic human urothelium. Am. J.
Pathol. 1998; 153: 1957–67.
[13] Rackley, R.R., Bandyopadhyay, S.K., Fazeli-Matin, S., Shin, M.S., and Appell, R. Immunoregulatory
potential of urothelium: characterization of NF-kappaB signal transduction. J. Urol. 1999; 162:
1812–6.
[14] Bergsma, J.E., Rozema, F.R., Bos, R.R.M, van Rozendaal, A.W.M, de Jong, W.H., Teppema, J.S., and
Joziasse, C.A.P. Biocompatibility and degradatin mechanism of predegraded and non-degraded
poly(lactide) implants: an animal study. Mater. Med. 1995; 6: 715–24.
[15] Atala, A. Autologous cell transplantation for urologic reconstruction. J. Urol. 1998; 159: 2–3.
[16] Kim, B.S. and Mooney, D.J. Development of biocompatible synthetic extracellular matrices for
tissue engineering. Trend Biotechnol. 1998; 16: 224–30.
[17] Pariente, J.L., Kim, B.S., and Atala, A. In vitro biocompatibility assessment of naturally-derived
and sythetic biomaterials using normal human urothelial cells. J. Biomed. Mater. Res. 2001; 55:
33–39.
[18] Pariente, J.L., Kim, B.S., and Atala, A. In vitro biocompatibility evaluation of naturally derived and
synthetic biomaterials using normal human bladder smooth muscle. J. Urol. 2002; 167: 1867–71.
[19] Li, S.T. Biologic biomaterials: tissue-derived biomaterials (collagen). In: Brozino, J.D., Ed. The
Biomedical Engineering Handbook. Boca Ranton, FL: CRC Press, 1995, pp. 627–647.