398 Handbook of Chemoinformatics Algorithms
70. Free, S. M. and Wilson, J. W., A mathematical contribution to structure–activity studies.
J. Med. Chem. 1964, 7, 395–399.
71. Liu, H. X., Xue, C. X., Zhang, R. S., Yao, X. J., Liu, M. C., Hu, Z. D., and Fan, B. T.,
Quantitative prediction of logk of peptides in high-performance liquid chromatography
based on molecular descriptors by using the heuristic method and support vector machine.
J. Chem. Inf. Comput. Sci. 2004, 44(6), 1979–1986.
72. Tugcu, N., Song, M., Breneman, C. M., Sukumar, N., Bennett, K. P., and Cramer, S. M.,
Prediction of the effect of mobile-phase salt type on protein retention and selectivity in
anion exchange systems. Anal. Chem. 2003, 75(14), 3563–3572.
73. Xue, C. X., Zhang, R. S., Liu, H. X., Liu, M. C., Hu, Z. D., and Fan, B. T., Support
vector machines-based quantitative structure–property relationship for the prediction of
heat capacity. J. Chem. Inf. Comput. Sci. 2004, 44(4), 1267–1274.
74. Burbidge, R., Trotter, M., Buxton, B., and Holden, S., Drug design by machine learning:
Support vector machines for pharmaceutical data analysis. Comput. Chem. 2001, 26(1),
5–14.
75. Warmuth, M. K., Liao, J., Ratsch, G., Mathieson, M., Putta, S., and Lemmen, C., Active
learning with support vector machines in the drug discovery process. J. Chem. Inf. Comput.
Sci. 2003, 43(2), 667–673.
76. Kashima, H., Tsuda, K., and Inokuchi, A., Marginalized kernels between labeled graphs,
In: 20th International Conference on Machine Learning (ICML), T. Fawcett and N. Mishra
(eds), AAAI Press, Washington, DC, 2003; pp. 321–328.
77. Mahe, P., Ueda, N., Akutsu, T., Perret, J. L., and Vert, J. P., Graph kernels for molecular
structure–activity relationship analysis with support vector machines. J. Chem. Inf. Model.
2005, 45(4), 939–951.
78. Faulon, J. L., Misra, M., Martin, S., Sale, K., and Sapra, R., Genome scale enzyme–
metabolite and drug–target interaction predictions using the signature molecular descrip-
tor. Bioinformatics 2008, 24(2), 225–233.
79. Martin, S., Brown, W. M., and Faulon, J. L., Using product kernels to predict protein
interactions. Adv. Biochem. Eng. Biotechnol. 2007, 110, 215–245.
80. Faulon, J. L., Churchwell, C. J., and Visco, D. P., Jr., The signature molecular descriptor.
2. Enumerating molecules from their extended valence sequences. J. Chem. Inf. Comput.
Sci. 2003, 43(3), 721–734.
81. Faulon, J. L., Collins, M. J., and Carr, R. D., The signature molecular descriptor. 4. Can-
onizing molecules using extended valence sequences. J. Chem. Inf. Comput. Sci. 2004,
44(2), 427–436.
82. Faulon, J. L., Visco, D. P., Jr., and Pophale, R. S., The signature molecular descriptor. 1.
Using extended valence sequences in QSAR and QSPR studies. J. Chem. Inf. Comput.
Sci. 2003, 43(3), 707–720.
83. Nagamine, N. and Sakakibara, Y., Statistical prediction of protein chemical interactions
based on chemical structure and mass spectrometry data. Bioinformatics 2007, 23(15),
2004–2012.