Sequence Alignment Algorithms 381
2. Aoki, K. F.,Yamaguchi, A., Ueda, N., Akutsu, T., Mamitsuka, H., Goto, S., and Kanehisa,
M., KCaM (KEGG carbohydrate matcher): A software tool for analyzing the structure of
carbohydrate sugar chains. Nucleic Acids Res. 2004, 32, W267–W272.
3. Aoki, K. F., Yamaguchi, A., Okuno, Y., Akutsu, T., Ueda, N., Kanehisa, M., and
Mamitsuka, H., Efficient tree-matching methods for accurate carbohydrate database
queries. Genome Inform. 2003, 14, 134–143.
4. Aoki, K. F., Mamitsuka, H., Akutsu, T., and Kanehisa, M., A score matrix to reveal the
hidden links in glycans. Bioinformatics 2005, 21, 1457–1463.
5. Hashimoto, K., Aoki-Kinoshita, K. F., Ueda, N., Kanehisa, M., and Mamitsuka, H., A new
efficientprobabilistic model for mining labeled ordered treesapplied to glycobiology. ACM
Trans. Knowl. Discov. Data 2008, 2, Article No. 6.
6. Kuboyama, T., Hirata, K., and Aoki-Kinoshita, K. F., Efficient unordered tree kernel and
its application to glycan classification. Lect. Notes Comput. Sci. 2008, 5012, 184–195.
7. Yamanishi, Y., Bach, F., and Vert, J-P., Glycan classification with tree kernels. Bioinfor-
matics 2007, 23, 1211–1216.
8. Kawano, S., Hashimoto, K., Miyama, T., Goto, S., and Kanehisa, M., Prediction of
glycan structures from gene expression data based on glycosyltransferase reactions.
Bioinformatics 2005, 21, 3976–3982.
9. Shan, B., Ma, B., Zhang, K., and Lajoie, G., Complexities and algorithms for glycan
sequencing using tandem mass spectrometry. J. Bioinfor. Comput. Biol. 2008, 6, 77–91.
10. Bille, P., A survey on tree edit distance and related problem. Theoret. Comput. Sci. 2005,
337, 217–239.
11. Zhang, K., RNA structure comparison and alignment. In J. T-L. Wang, et al. (Eds.) Data
Mining in Bioinformatics; Springer: Heidelberg, 2005, pp. 59–81.
12. Tai, K-C., The tree-to-tree correction problem. J. ACM 1979, 26, 422–433.
13. Zhang, K. and Shasha, D., Simple fast algorithms for the editing distance between trees
and related problems. SIAM J. Comput. 1989, 18, 1245–1262.
14. Klein, P. N., Computing the edit-distance between unrooted ordered trees. Lect. Notes
Comput. Sci. 1998, 1461, 91–102.
15. Demaine, E., Mozes, S., Rossman, B., and Weimann, O., An optimal decomposition
algorithm for tree edit distance. Lect. Notes Comput. Sci. 2007, 4596, 146–157.
16. Zhang, K. and Jiang, T., Some MAX SNP-hard results concerning unordered labeled trees.
Inf. Proc. Lett. 1994, 49, 249–254.
17. Horesh,Y., Mehr, R. and Unger, R., Designing anA
∗
algorithm for calculating edit distance
between rooted-unordered trees. J. Comput. Biol. 2006, 13, 1165–1176.
18. Jiang, T., Wang, L., and Zhang, K., Alignment of trees—an alternative to tree edit. Theoret.
Comput. Sci. 1995, 143, 137–148.
19. Edmonds, J. and Matula, D., An algorithm for subtree identification. SIAM Rev. 1968, 10,
273–274.
20. Akutsu, T., An RNC algorithm for finding a largest common subtree of two trees. IEICE
Trans. Inf. Syst. 1992, E75-D, 95–101.
21. Akutsu, T., A Polynomial time algorithm for finding a largest common subgraph of almost
trees of bounded degree. IEICE Trans. Fundam. 1993, E76-A, 1488–1493.
22. Yamaguchi, A., Aoki, K. F., and Mamitsuka, H., Finding the maximum common subgraph
of a partial k-tree and a graph with a polynomially bounded number of spanning trees. Inf.
Proc. Lett. 2004, 92, 57–63.
23. Durbin, R., Eddy. S., Krogh, A., and Mitchison, G., Biological sequence analysis: Prob-
abilistic models of proteins and nucleic acids. Cambridge University Press: Cambridge,
UK, 1998.