Machine Learning–Based Bioinformatics Algorithms 395
7. Jarvis, R. A. and Patrick, E. A., Clustering using a similarity measure based on shared near
neighbors. IEEE Trans. Comput. 1973, C-22(11), 1025–1034.
8. Rubin, V. and Willett, P., A comparison of some hierarchical agglomerative clustering
algorithms for structure–property correlation. Anal. Chim. Acta 1983, 151, 161–166.
9. Willett, P., A comparison of some hierarchical agglomerative clustering algorithms for
structure–property correlation. Anal. Chim. Acta 1982, 136, 29–37.
10. Willett, P., Evaluation of relocation clustering algorithms for the automatic classification
of chemical structures. J. Chem. Inf. Comput. Sci. 1984, 24(1), 29–33.
11. Willett, P., Barnard, J. M., and Downs, G. M., Chemical similarity searching. J. Chem.
Inf. Comput. Sci. 1998, 38(6), 983–996.
12. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O., Quantitative monitoring of gene
expression patterns with a complementary DNA microarray. Science 1995, 270(5235),
467–470.
13. Shalon, D., Smith, S. J., and Brown, P. O., A DNA microarray system for analyzing
complex DNA samples using two-color fluorescent probe hybridization. Genome Res.
1996, 6(7), 639–645.
14. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D., Cluster analysis and
display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 1998, 95(25),
14863–14868.
15. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown,
P. O., Botstein, D., and Futcher, B., Comprehensive identification of cell cycle-regulated
genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell
1998, 9(12), 3273–3297.
16. Wilson, C. S., Davidson, G. S., Martin, S. B., Andries, E., Potter, J., Harvey, R., Ar, K.,
et al., Gene expression profiling of adult acute myeloid leukemia identifies novel biologic
clusters for risk classification and outcome prediction. Blood 2006, 108(2), 685–696.
17. Jiang, D., Tang, C., and Zhang, A., Cluster analysis for gene expression data: A survey.
IEEE Trans. Knowl. Data Eng. 2004, 16(11), 1370–1386.
18. Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J., and Church, G. M., Systematic
determination of genetic network architecture. Nat. Genet. 1999, 22(3), 281–285.
19. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.
S., and Golub, T. R., Interpreting patterns of gene expression with self-organizing maps:
Methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA
1999, 96(6), 2907–2912.
20. Shamir, R. and Sharan, R., Click: A clustering algorithm for gene expression analysis.
In: Proceedings of the 8th International Conference on Intelligent Systems for Molecular
Biology (ISMB), AAAI Press, San Diego, CA, 2000; Vol. 8, pp. 307–316.
21. Ben-Dor, A., Shamir, R., andYakhini, Z., Clustering gene expression patterns. J. Comput.
Biol. 1999, 6(3–4), 281–297.
22. Cheng, Y. and Church, G. M., Biclustering of expression data. In: Proceedings of the 8th
International Conference on Intelligent Systems for Molecular Biology (ISMB), AAAI
Press, San Diego, CA, 2000; Vol. 8, pp. 93–103.
23. Getz, G., Levine, E., and Domany, E., Coupled two-way clustering analysis of gene
microarray data. Proc. Natl. Acad. Sci. USA 2000, 97(22), 12079–12084.
24. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J., Basic local alignment
search tool. J. Mol. Biol. 1990, 215(3), 403–410.
25. Cohen, A. M. and Hersh, W. R., A survey of current work in biomedical text mining. Brief
Bioinform. 2005, 6(1), 57–71.
26. Janssens, F., Glanzel, W., and DeMoor, B., Dynamic hybrid clustering of bioinformatics by
incorporating text mining and citation analysis. In: Proceedings of the 13th ACM SIGKDD