150 3 Lagrange’s Equation of Motion
The kinetic coenergy, potential energy and the dissipation function are
T
∗
= 0, V = (V
1
− V
3
+ V
20
)
2
/(2C
1
) + V
2
3
/(2C
2
), and D = 0, respectively.
Lagrange’s equations are
d
dt
∂T
∗
∂
˙
V
1
−
∂T
∗
∂V
1
+
∂D
∂
˙
V
1
+
∂V
∂V
1
= e
s
V
1
, (c)
d
dt
∂T
∗
∂
˙
V
3
−
∂T
∗
∂V
3
+
∂D
∂
˙
V
3
+
∂V
∂V
3
= e
s
V
3
. (d)
Using the energy relationships, the generalized efforts, and (a) gives
(c) ⇒
1
C
1
(V
1
− V
3
+ V
20
) = P,
(d) ⇒ −
1
C
1
(V
1
− V
3
+ V
20
) +
V
3
C
2
= −R
f
|
˙
V
3
|
˙
V
3
.
References
1. C. Lanczos, The Variational Principles of Mechanics, vol. 4, 4th ed. Uni-
versity of Toronto Press, 1970.
2. G. W. Ogar and J. J. D’Azzo, “A Unified Procedure for Deriving the Dif-
ferential Equations of of Electrical and Mechanical Systems,” IRE Trans-
actions on Education, vol. E-5, pp. 18-26, 1962.
3. L. Meirovitch, Methods of Analytical Dynamics, McGraw-Hill, 1970.
4. L. A. Pars, A Treatise on Analytical Dynamics. Heinemann, 1965.
5. R. J. Smith, Circuits devices and systems, John Wiley and Sons, 1976.
6. G. J. Van Wylen and R. E. Sonntag, Fundamentals of Classical Thermo-
dynamics, 3rd ed. Wiley & Sons, 1985.
7. P. E. Wellstead, Introduction to Physical System Modelling, Academic
Press, 1979.
8. D. C. White, and H. H. Woodson, Electromechanical Energy Conversion,
John Wiley & Sons, 1959.
9. J. H. Williams, Jr., Fundamentals of Applied Dynamics, John Wiley &
Sons, 1996.
Problems
1. In Example 3.5, show that the reaction forces at O do not contribute to
the virtual work.