98 2 Kinematics
References
1. H. Goldstein, Classical Mechanics, 2nd ed., Addison-Wesley, 1980.
2. D. T. Greenwood, Principles of Dynamics, 2nd ed., Prentice-Hall, 1988.
3. E. J. Haug, Intermediate Dynamics. Prentice-Hall, 1992.
4. J. L. Junkins and J. D. Turner, Optimal Spacecraft Rotational Maneuvers.
Elsevier, 1986.
5. S. W. McCuskey, Introduction to Advanced Dynamics, Addison-Wesley,
1959.
6. L. Meirovitch, Methods of Analytical Dynamics, McGraw-Hill, 1970.
7. B. Paul, Kinematics and Dynamics of Planar Machinery, Prentice-Hall,
1979.
8. G. Sandor and A. Erdman, Advanced Mechanism Design: Analysis and
Synthesis, Volume 2, Prentice-Hall, 1984.
9. A. Shabana, Computational Dynamics, John Wiley & Sons, 2001.
10. M. R. Spiegel, Theory and Problems of Theoretical Mechanics, Schaum’s
Outline Series, McGraw-Hill, 1967.
11. W. T. Thomson, Introduction to Space Dynamics, Dover Publications,
1986.
12. A. H. von Flotow and D. Rosenthal, Multi-Body Dynamics; An Algo-
rithmic Approach Based Upon Kane’s Equations. Lecture notes. MIT:
1990.
13. D. A. Wells, Theory and Problems of Lagrangian Dynamics, Schaum’s
Outline Series, McGraw-Hill, 1967.
14. J. H. Williams, Jr., Fundamentals of Applied Dynamics, John Wiley &
Sons, 1996.
15. C. E. Wilson and J. P. Sadler Kinematic and Dynamics of Machinery,
Harper Colins, 1991.
Problems
1. The cylindrical coordinates of a point are given by
ρ
θ
ζ
=
1.253
4π
9
cos 5t
1 − cos 2t
,
where t denotes the time. (a) Find the position of the point using rect-
angular coordinates. (b) Plot the position and velocity of the point in
rectangular coordinates for 0 ≤ t ≤ 2π. (c) Let λ =
p
x
2
+ y
2
, where x
and y are the position of the point along the x-axis and y-axis respec-
tively. Plot λ for 0 ≤ t ≤ 2π.
2. The spherical coordinates of a point are given by