k
x
k
θ
k
τ
k
eq,s
k
eq,m
−1,060
0,510 0,160 1,005 0,275
C.4.3 Cylinder: step change of thickness
r
t
1
-
-x
p
n
x
t
2
MT n
p
θ
σ
=
Maximum
σ
sx
Maxi
mum
σ
sθ
Maxi
mum
τ
xn
Maximum
σ
eq,s
Maximum
σ
eq,m
k
x
σ
MT
θ
k
θ
σ
MT
θ
k
τ
t/r
σ
MT
θ
k
eq,s
σ
MT
θ
k
eq,m
σ
MT
θ
k
x
k
θ
k
τ
k
eq,s
k
eq,m
1,0 0,0 1,0 0,0 1,0 1,0
0,8 0,0256 1,010 0,179 1,009 0,895
0,667 0,0862 1,019 0,349 1,015 0,815
0,571 0,168 1,023 0,514 1,019 0,750
0,5 0,260 1,027 0,673 1,023 0,694
C.5 Ring stiffener on cylindrical shell
C.5.1 Ring stiffened cylinder: radial force on ring
The stresses in the shell should be determined using the calculated value of w from this clause
introduced into the expressions given in C.2.5.
Where there is a change in the shell thickness at the ring, the method set out in 8.2.2 of EN 1993-4-1
should be used.
b
m
b
m
b
def
ormations
P
r
A
r
w
r
w = w
r
b
m
= 0,778
rt
r m
wE P r
⋅
=
+ +
r
r m
P r
θ
σ
=
+ +