Nature or microscopic reasoning in Statistical Physics tells us, that as part of
Second Law of thermodynamics it always holds that entropy s, given by ds ¼
dQ=t is such an adiabatic invariant, that is, ds is always a total differential, and
s /
ad
¼ s:
References
1. Hartshorne, R.: Algebraic Geometry. Springer, New York (1977)
2. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Interscience, vols. I and
II. New York (1963, 1969)
3. Chern, S.S., Chen, W.H., Lam, K.S.: Lectures on Differential Geometry. World Scientific,
Singapore (2000)
4. Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Springer, New York
(1983)
5. Schwartz, L.: Analyse Mathématique. Hermann, Paris (1967)
6. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Dynamical Systems III. Encyclopedia of
Mathematical Sciences, vol. 3. Springer, Berlin (1988)
7. Morchio, G., Strocchi, F.: Classical and quantum mechanics from the universal Poisson-
Rinehart algebra of a manifold. Rep. Math. Phys. 64, 33–48 (2009)
8. Dirac, P.A.M.: Lectures on Quantum Mechanics. Academic Press, New York (1964)
9. Gitman, D.M., Tyutin, I.V.: Quantization of Fields with Constraints. Springer, Berlin (1990)
10. Chitaia, N.P., Gogilidze, S.A., Surovtsev, Y.S.: Dynamical systems with first- and second-
order constraints. I and II. Phys. Rev. D 56, 1135–1155 (1997)
11. Bloch, A.M., Fernandez, O.E., Mestdag, T.: Hamiltonization of nonholomorphic systems and
the inverse problem of the calculus of variations. Rep. Math. Phys. 63, 225–249 (2009)
12. van der Schaft, A.J., Maschke, B.M.: On the Hamiltonian Formulation of Nonholomorphic
Mechanical Systems. Rep. Math. Phys. 34, 225–233 (1994).
3.7 Examples from Physics 95