Atomistic to continuum coupling methods 2
43
[116] , Weak convergence methods for Hamiltonian multiscale problems, D
iscrete and con-
tinuous dynamical systems A 20 (2008), pp. 53–79.
[117] R. Miller, E. B. Tadmor, R. Phillips and M. Ortiz, Quasicontinuum simulation of fracture at
the atomic scale, Modelling Simul. Mater. Sci. Eng. 6 (1998), pp. 607–638.
[118] R. E. Miller and E. B. Tadmor, The quasicontinuum method: Overview, applications and
current directions, J. Computer-Aided Mater. Des. 9 (2002), pp. 203–239.
[119] S. Moorthy and S. Ghosh, Adaptivity and convergence in the Voronoi cell finite element
model for analyzing heterogeneous materials, Comput. Methods Appl. Mech. Eng. 185 (2000),
pp. 37–74.
[120] S. Müller and A. Schlömerkemper, Discrete-to-continuum limit of magnetic forces, C.R.
Acad. Sci. Paris, Série I 335 (2002), pp. 393–398.
[121] A. Nakano, M. E. Bachlechner, R. K. Kalia, E. Lidorikis, P. Vashishta and G. Z. Voyiadjis,
Multiscale simulation of nanosystems, Computing in Science & Engineering (July/August
2001), pp. 56–66.
[122] A. Nakano, T. J. Campbell, R. K. Kalia, S. Kodiyalam, S. Ogata, F. Shimojo, X. Su and
P. Vashishta, Scalable multiresolution algorithms for classical and quantum molecular dy-
namics of nanosystems, Handbook of Numerical Analysis (P.G. Ciarlet and C. Le Bris, eds.),
vol. X: Special volume: Computational chemistry, North-Holland, 2003, pp. 639–666.
[123] A. Nakano, R.K. Kalia, P.Vashishta, T. Campbell, S. Ogata, F.Shimojo and S. Saini, Scalable
atomistic simulation algorithms for materials research, Scientific Programming 10 (2002),
pp. 263–270.
[124] X. B. Nie, S. Y. Chen, W. N. E and M. O. Robbins, A continuum and molecular dynamics
hybrid method for micro and nano fluid flow, J. Fluid Mech. 500 (2000), pp. 55–64.
[125] X. B. Nie, S. Y. Chen and M. O. Robbins, Hybrid continuum-atomistic simulation of singular
corner flow, Physics of Fluids 16 (2004), pp. 3579–3591.
[126] J. T. Oden, S. Prudhomme, A. Romkes and P. T. Bauman, Multiscale modeling of physical
phenomena: Adaptive control of models, SIAM J. Sci. Comput. 28 (2006), pp. 2359–2389.
[127] S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta and R. K. Kalia, Hybrid finite-
element / molecular-dynamics / electronic density-functional approach to materials simula-
tions on parallel computers, Comput. Phys. Comm. 138 (2001), pp. 143–154.
[128] C. Ortner, Gradient flows as a selection procedure for equilibria of nonconvex energies, SIAM
J. Math. Anal. 38 (2006), pp. 1214–1234.
[129] C. Ortner and E. Süli, A posteriori analysis and adaptive algorithms for the quasicontinuum
method in one dimension, Oxford Numerical Analysis Group, Report no. NA-06/13, Univer-
sity of Oxford, 2006.
[130]
, Analysis of a quasicontinuum method in one dimension, M
ath. Mod. Num. Anal. 42
(2008), pp. 57–91.
[131] S. Pagano and R. Paroni, A simple model for phase transitions: from the discrete to the
continuum problems, Quarterly of Applied Math. 61 (2003), pp. 89–109.
[132] H. S. Park, E. G. Karpov, P. A. Klein and W. K. Liu, Three-dimensional bridging scale anal-
ysis of dynamic fracture, J. Comput. Phys. 207 (2005), pp. 588–609.
[133] M. L. Parks, P. B. Bochev and R. B. Lehoucq, Connecting atomistic-to-continuum coupling
and domain decomposition, SIAM J. Multiscale Model. Simul. 7 (2008), pp. 362–380.
[134] C. Patz, in preparation, Ph.D. thesis, WIAS, Berlin.
[135] S. Prudhomme, P. T. Bauman and J. T. Oden, Error control for molecular statics problems,
Int. J. Multiscale Comput. Eng. 4 (2006), pp. 647–662.