454 Part B Atoms
obtain the value
K
a
−(κ −1/2)/κK
2
= 0.72 ±0.10 (29.18)
for the constant governing the spin-dependent interac-
tion.
Radiative corrections to the weak charge Q
W
incor-
porating a parameterization of new physics beyond the
standard model have been worked out by Marciano and
Rosner [29.11], who find
Q
W
133
Cs
55
=−73.20 −0.8S−0.005T ±0.13 ,
(29.19)
assuming the values m
t
= 140 GeV for the top quark
mass and m
H
= 100 GeV for the Higgs particle mass.
The parameters S and T in (29.19) are associated partly
with deviations of the top quark and Higgs masses from
their assumed values and partly with new physics beyond
the standard model. In the absence of new physics, the
small factor multiplying T makes this prediction very
insensitive to the top quark mass. Unfortunately, both
the experimental and theoretical errors are presently
too large to make atomic PNC in cesium a precision
test of the standard model. However, there are two
features of cesium PNC that even at the present ac-
curacy lead to particle physics implications. The first
is the fact that large positive values of S, such as can
arise in technicolor theories [29.28], will lead to dis-
agreement of theory and experiment in cesium PNC.
The second is the effect of extra Z bosons, which is
not accounted for in (29.19). Exchange of new Z’s
can be shown to be strongly constrained by atomic
PNC [29.29]. Perhaps more interesting is the possibil-
ity of having entirely new physics that has not been
thought of. Since new physics affects different weak
interaction tests differently, it is important to have
as many such tests as possible. The value of atomic
PNC tests will increase when the next stage of ac-
curacy is reached, at which time atomic physics will
have a significant role in precision tests of the standard
model.
References
29.1 M. A. Bouchiat, C. C. Bouchiat: J. Phys. (Paris) 35,
899 (1974)
29.2 M. A. Bouchiat et al.: J. Phys. (Paris) 47, 1709 (1986)
29.3 S. C. Bennett, C. E. Wieman: Phys. Rev. Lett. 82,
2484 (1999)
29.4 C. S. Wood et al.: Science 275, 1759 (1997)
29.5 P. S. Drell, E. D. Commins: Phys. Rev. Lett. 53,968
(1984)
29.6 T. M. Wolfenden, P. E. G. Baird, P. G. H. Sandars:
Europhys. Lett. 15, 731 (1991)
29.7 T. P. Emmons, J. M. Reeves, E. N. Fortson: Phys.
Rev. Lett. 51, 2089 (1983)
29.8 M. J. D. Macpherson, K. P. Zetie, R. B. Warrington,
D. N. Stacey, J. P. Hoare: Phys. Rev. Lett. 67,2784
(1991)
29.9 W. Bernreuther, M. Suzuki: Rev. Mod. Phys. 63,313
(1991)
29.10 S. A. Blundell, J. Sapirstein, W. R. Johnson: Phys.
Rev. D 45, 1602 (1992)
29.11 W. Marciano, J. Rosner: Phys. Rev. Lett. 65,2963
(1990)
29.12 V. A. Dzuba, V. V. Flambaum, O. P. Sushkov: Phys.
Lett. A 141, 147 (1989)
29.13 A. C. Hartley, E. Lindroth, A.-M. Mårtensson-
Pendrill: J. Phys. B 23, 3417 (1990)
29.14 Ya. Zel’dovich: Zh. Eksp. Teor. Fiz. 33,1531
(1957) [Sov. Phys. JETP 6, 1184 (1958)]
29.15 W. R. Johnson, M. Idrees, J. Sapirstein: Phys. Rev.
A 35, 3218 (1987)
29.16 S. A. Blundell, W. R. Johnson, J. Sapirstein: Phys.
Rev. A 43, 3407 (1991)
29.17 R. Engfer et al.: At. Data Nucl. Data Tables 14,479
(1974)
29.18 B. Q. Chen, P. Vogel: Phys. Rev. C 48, 1392 (1993)
29.19 V. V. Flambaum, I. B. Khriplovich, O. P. Sushkov:
Phys. Lett. 146B,367(1984)
29.20 A. Derevianko: Phys. Rev. Lett. 85, 1618 (2000)
29.21 W. R. Johnson, I. Bednyakov, G. Soff: Phys. Rev.
Lett. 87, 233001 (2001)
29.22 W. R. Johnson, I. Bednyakov, G. Soff: Phys. Rev.
Lett. 88, 079903 (2002)
29.23 V. A. Dzuba, V. V. Flambaum, J. S. M. Ginges: Phys.
Rev. 66, 076013 (2002)
29.24 A. A. Vasilyev, I. M. Savukov, M. S. Safronova,
H. G. Berry: Phys. Rev. A 66, 020101 (2002)
29.25 M. Yu. Kuchiev: J. Phys. B 35, L503 (2002)
29.26 A. I. Milstein, O. P. Sushkov, I. S. Terekhov: Phys.
Rev. Lett. 89, 283003 (2002)
29.27 J. Sapirstein, K. Pachucki, A. Veitia, K. T. Cheng:
Phys. Rev. A 67, 052110 (2003)
29.28 M. E. Peskin, T. Takeuchi: Phys. Rev. Lett. 65,964
(1990)
29.29 P. Langacker, M. Luo: Phys. Rev. D 45,278
(1992)
Part B 29