170 Part A Mathematical Methods
The second (irregular) solution to the Legendre
equation, which appears in (9.43) above, can be defined
by the integral representation
Q
(
z
)
= 2
−−1
1
−1
1 −t
2
(
z−t
)
−−1
dt .
(9.233)
The first two Q
are
Q
0
(
z
)
=
1
2
ln
z+1
z−1
,
(9.234)
Q
1
(
z
)
=
1
2
z ln
z+1
z−1
−1 ,
(9.235)
Additional Q
can be obtained with the aid of the
recursion relation
Q
+1
(
z
)
=
[
(
2 +1
)
zQ
(
z
)
−Q
−1
(
z
)
/
(
+1
)
,
(9.236)
which is valid for ≥ 1.
References
9.1 M. Abramowitz, I. A. Stegun: Handbook of Math-
ematical Functions (Dover, New York 1965)
9.2 A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tri-
comi: Higher Transcendental Functions, Vol.1,2,3
(McGraw-Hill, New York 1955) p. 1953
9.3 A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tri-
comi: Tables of Integral Transforms,Vol.1,2
(McGraw-Hill, New York 1954)
9.4 I. S. Gradshteyn, I. W. Ryzhik: Tables of Integrals,
Series, and Products, 4th edn. (Academic Press, New
York 1965)
9.5 E. Jahnke, F. Emde: Tables of Functions with Formu-
lae and Curves, 4th edn. (Dover, New York 1945)
9.6 Y. L. Luke: The Special Functions and Their Approxi-
mations, Vol. 1, 2 (Academic Press, New York 1969)
9.7 Y. L. Luke: Mathematical Functions and Their Ap-
proximations (Academic Press, New York 1975)
9.8 W. Magnus, F. Oberhettinger, R. P. Soni: Formu-
las and Theorems for the Special Functions of
Mathematical Physics, 3rd edn. (Springer, Berlin,
Heidelberg 1966)
9.9 F. W. J. Olver: Asymptotics and Special Functions
(Academic Press, New York 1974) Reprinted A. K. Pe-
ters, Wellesley 1997
9.10 G. Szego: Orthogonal Polynomials, Vol. 23, 4th edn.
(American Mathematical Society, Providence 1975)
9.11 F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark:
NIST Handbook of Mathematical Functions,in
preparation
9.12 F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark:
NIST Digital Library of Mathematical Functions,in
preparation (see http://dlmf.nist.gov/)
9.13 A. R. Edmonds: Angular Momentum in Quantum
Mechanics (Princeton Univ. Press, Princeton 1960)
Sec. 2.5
9.14 L. Pauling, E. Bright Wilson: Introduction to Quan-
tum Mechanics With Applications to Chemistry
(McGraw-Hill, New York 1935) Sect. 21
9.15 G. W. F. Drake, R. N. Hill: J. Phys. B 26, 3159 (1993)
9.16 L. I. Schiff: Quantum Mechanics, 3rd edn. (McGraw-
Hill, New York 1968) pp. 234–239
9.17 J. D. Talman: Special Functions, A Group Theoretic
Approach (W. A. Benjamin, New York 1968) pp. 186–
188
9.18 V. Fock: Z. Physik 98, 145 (1935) The relation of the
Runge–Lenz vector to the “hidden” O(4) symmetry
is discussed in Section 3.6.3
9.19 M. Reed, B. Simon: Methods of Modern Mathemat-
ical Physics. I. Functional Analysis (Academic Press,
New York, London 1972) pp. 263–264 Chapters VII The
Spectral Theorem and VIII Unbounded Operators. See
Theorem VIII.6
9.20 L. Hostler: J. Math. Phys. 5, 591, 1235 (1964)
9.21 J. Schwinger: J. Math. Phys. 5, 1606 (1964)
9.22 R. A. Swainson, G. W. F. Drake: J. Phys. A 24, 79, 95,
1801 (1991)
9.23 R. N. Hill, B. D. Huxtable: J. Math. Phys. 23,2365
(1982)
9.24 R. Courant, D. Hilbert: Methods of Mathematical
Physics, Vol. 1 (Interscience, New York 1953)
9.25 D. J. Hylton: J. Math. Phys. 25, 1125 (1984)
9.26 D. W. Lozier, F. W. J. Olver: Mathematics of Com-
putation 1943–1993: A Half-Century of Com-
putational Mathematics, Proceedings of Sym-
posia in Applied Mathematics Vol. 48, ed. by
W. Gautschi (American Mathematical Society, Provi-
dence 1994)
9.27 I. J. Thompson, A. R. Barnett: J. Comput. Phys. 64,
490 (1986)
9.28 I. J. Thompson, A. R. Barnett: Comp. Phys. Commun.
36, 363 (1985)
9.29 R. E. Meyer: SIAM Rev. 31, 435 (1989)
9.30 H. Skovgarrd: Uniform Asymptotic Expansions of
Confluent Hypergeometric Functions and Whittaker
Functions (Gjellerups, Copenhagen 1966)
9.31 N. Bleistein, R. A. Handelsman: Asymptotic Expan-
sions of Integrals (Holt, Rinehart, & Winston, New
York 1975) Reprinted Dover, New York 1986
Part A 9