98 Part A Mathematical Methods
corresponding matrix elements of general spin-orbital
U(2n) generators in terms of which the relevant spin-
dependent terms may be expressed. This was first done
in the context of the symmetric group and Racah algebra
by Dr ake and Schlesinger [4.78] and later on in terms of
the Gel’fand–Paldus tableaux [4.102–106].
In general, the U(2n) generators e
iσ, jτ
≡ e
IJ
may be
resolved into the spin-shift components e(±)
IJ
that in-
crease (+) or decrease (−) the total spin S by one unit
and the zero-spin component e(0)
IJ
that preserves S.
The relevant matrix elements can then be expressed in
terms of the matrix elements of a single U(n) adjoint ten-
sor operator ∆, which is given by the following second
degree polynomial in U(n) generators,
∆ = E(E+ N/2 − n− 2), E =E
ij
(4.107)
and by the well-known matrix elements of U(2) or SU(2)
generators in terms of the pure spin states [4.102, 103]
(see also [4.107, 108]). The operator (4.107), referred
to as the Gould–Paldus operator [4.109], also plays
a key role in the determination of reduced density ma-
trices [4.110, 111], and has been recently exploited in
the multireference spin-adapted variant of the density
functional theory [4.109].
References
4.1 A. O. Barut: Dynamical Groups and Generalized Sym-
metries in Quantum Theory, Vols. 1 and 2 (Univ.
Canterbury, Christchurch 1971)
4.2 A. Bohm, Y. Ne’eman, A. O. Barut: Dynamical Groups
and Spectrum Generating Algebras (World Scientific,
Singapore 1988)
4.3 R. Gilmore: Lie Groups, Lie Algebras, and Some of
Their Applications (Wiley, New York 1974)
4.4 B. G. Wybourne: Classical Groups for Physicists (Wi-
ley, New York 1974)
4.5 J.-Q. Chen: Group Representation Theory for Physi-
cists (World Scientific, Singapore 1989)
4.6 J.-Q. Chen, J. Ping, F. Wang: Group Representa-
tion Theory for Physicists, 2nd edn. (World Scientific,
Singapore 2002)
4.7 O. Castaños, A. Frank, R. Lopez-Peña: J. Phys. A:
Math. Gen. 23, 5141 (1990)
4.8 F. Iachello, R. D. Levine: Algebraic Theory of
Molecules (Oxford Univ. Press, Oxford 1995)
4.9 A. Frank, P. Van Isacker: Algebraic Methods in Mo-
lecular and Nuclear Structure (Wiley, New York 1994)
4.10 J. Paldus: Mathematical Frontiers in Computational
Chemical Physics, ed. by D. G. Truhlar (Springer,
Berlin, Heidelberg 1988) pp. 262–299
4.11 I. Shavitt: Mathematical Frontiers in Computational
Chemical Physics, ed. by D. G. Truhlar (Springer,
Berlin, Heidelberg 1988) pp. 300–349
4.12 J. Paldus: Contemporary Mathematics,Vol.160(AMS,
Providence 1994) pp. 209–236
4.13 J. C. Parikh: Group Symmetries in Nuclear Structure
(Plenum, New York 1978)
4.14 B. G. Adams, J.
ˇ
Cí
ˇ
zek, J. Paldus: Int. J. Quantum
Chem. 21, 153 (1982)
4.15 B. G. Adams, J.
ˇ
Cí
ˇ
zek, J. Paldus: Adv. Quantum Chem.
19, 1 (1988)
4.16 J.
ˇ
Cí
ˇ
zek, J. Paldus: Int. J. Quantum Chem. 12,875
(1977)
4.17 B. G. Adams: Algebraic Approach to Simple Quantum
Systems (Springer, Berlin, Heidelberg 1994)
4.18 A. Bohm: Nuovo Cimento A 43, 665 (1966)
4.19 A. Bohm: Quantum Mechanics (Springer, New York
1979)
4.20 M. A. Naimark: Linear Representations of the Lorentz
Group (Pergamon, New York 1964)
4.21 W. Pauli: Z. Phys. 36, 336 (1926)
4.22 V. Fock: Z. Phys. 98,145(1935)
4.23 A. O. Barut: Phys. Rev. B 135,839(1964)
4.24 A. O. Barut, G. L. Bornzin: J. Math. Phys. 12,841
(1971)
4.25 G. A. Zaicev: Algebraic Problems of Mathemati-
cal and Theoretical Physics (Science Publ. House,
Moscow 1974) (in Russian)
4.26 A. Joseph: Rev. Mod. Phys. 39, 829 (1967)
4.27 M. Bednar: Ann. Phys. (N. Y.) 75, 305 (1973)
4.28 J.
ˇ
Cí
ˇ
zek, E. R. Vrscay: Group Theoretical Methods in
Physics, ed. by R. Sharp, B. Coleman (Academic, New
York 1977) pp. 155–160
4.29 J.
ˇ
Cí
ˇ
zek, E. R. Vrscay: Int. J. Quantum Chem. 21,27
(1982)
4.30 J. E. Avron, B. G. Adams, J.
ˇ
Cí
ˇ
zek, M. Clay, L. Glasser,
P. Otto, J. Paldus, E. R. Vrscay: Phys. Rev. Lett. 43,
691 (1979)
4.31 J.
ˇ
Cí
ˇ
zek, M. Clay, J. Paldus: Phys. Rev. A 22, 793 (1980)
4.32 H. J. Silverstone, B. G. Adams, J.
ˇ
Cí
ˇ
zek, P. Otto: Phys.
Rev. Lett. 43, 1498 (1979)
4.33 E. R. Vrscay: Phys. Rev. A 31, 2054 (1985)
4.34 E. R. Vrscay: Phys. Rev. A 33, 1433 (1986)
4.35 H. J. Silverstone, R. K. Moats: Phys. Rev. A 23,1645
(1981)
4.36 H. Weyl: Classical Groups (Princeton Univ. Press,
Princeton 1939)
4.37 A. O. Barut, R. Raczka: Theory of Group Repre-
sentations and Applications (Polish Science Publ.,
Warszawa 1977)
4.38 J. D. Louck: Am. J. Phys. 38, 3 (1970)
4.39 J. Paldus: Theoretical Chemistry: Advances and Per-
spectives, Vol. 2, ed. by H. Eyring, D. J. Henderson
(Academic, New York 1976) pp. 131–290
Part A 4