Quantum Degenerate Gases References 1123
Superfluid-Mott Insulator Transition. Because the size
of the state space tends to grow as L
L
with the number
of lattice sites L, direct numerical solutions to the multi-
well problem are computationally intractable. This is
somewhat unfortunate, as a long lattice also presents be-
haviors with no obvious analogs in the two-well case,
and for which analytical approximations have proven
hard to come by. When tunneling dominates, the system
is in what is referred to as the superfluid phase. Fluctu-
ations of atom number between the states are relatively
large. On the other hand, if atom–atom interactions dom-
inate, it becomes costly in energy to put anything but an
exact number state of atoms at each lattice site. This is
the Mott insulator phase. According to calculations car-
ried out using the so-called Gutzwiller ansatz, the ground
state of an optical lattice inserted in an atom trap con-
sists of regions with the same integer number of atoms
at the lattice sites within each region [76.33]. When the
parameters of the system are varied, in what is known as
a quantum phase transition, the system should abruptly
switch between these phases.
The superfluid-Mott insulator transition has been
observed experimentally [76.34]. Lattice parameters, es-
pecially tunneling, can be varied easily by changing the
intensity of the lattice light. The observation of the tran-
sition is by means of phase coherence. In the superfluid
state the system is characterized by a global macroscopic
wave function. When the atoms are released from the lat-
tice, atoms originating from different sites are capable
of interference, and the interference pattern reflects the
lattice structure. On the other hand, in the Mott insu-
lator phase the lattice sites are in number states with
little phase coherence between them, and there is no
interference pattern.
References
76.1 F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari:
Rev. Mod. Phys. 71, 463 (1999)
76.2 A. S. Parkins, D. F. Walls: Phys. Rep. C303,1
(1998)
76.3 A. J. Leggett: Rev. Mod. Phys. 73, 307 (2001)
76.4 S. Stenholm: Phys. Rep. C363, 173 (2002)
76.5 A. L. Fetter: J. Low. Temp. Phys. 129, 263 (2002)
76.6 A. L. Fetter, J. D. Walecka: Quantum Theory of
Many-Particle Systems (McGraw-Hill, New York
1971)
76.7 M. D. Feit, J. A. Fleck Jr., A. Steiger: Solution of
the Schrödinger equation by a spectral method,
J. Comput. Phys. 47, 412 (1982)
76.8 J. R. Schrieffer: Theory of Superconductivity
(Addison-Wesley, Redwood City 1988)
76.9 M. D. Barrett, J. A. Sauer, M. S. Chapman: All-
optical formation of an atomic Bose-Einstein
condensate, Phys. Rev. Lett. 87, 010404 (2001)
76.10 S. Schneider, A. Kasper, Ch. vom Hagen, M. Barten-
stein, B. Engeser, T. Schumm, I. Bar-Joseph,
R. Folman, L. Feenstra, J. Schmiedmayer: Bose-
Einstein condensation in a simple microtrap, Phys.
Rev. A 67, 023612 (2003)
76.11 D. Rychtarik, B. Engeser, H.-C. Nägerl, R. Grimm:
Two-dimensional Bose–Einstein condensate in
an optical surface trap, Phys. Rev. Lett. 92, 173003
(2004)
76.12 B. DeMarco, D. S. Jin: Onset of Fermi degener-
acy in a trapped atomic gas, Science 285, 1703
(1999)
76.13 K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Gran-
ade, J. E. Thomas: Observation of a strongly
interacting degenerate Fermi gas of atoms, Science
298, 2179 (2002)
76.14 A. G. Truscott, K. E. Strecker, W. I. McAlexander,
G. B. Partridge, R. G. Hulet: Observation of Fermi
pressure in a gas of trapped atoms, Science 291,
2570 (2001)
76.15 J. R. Abo-Shaeer, C. Raman, J. M. Vogels, W. Ket-
terle: Observation of Vortex Lattices in Bose-
Einstein Condensates, Science 292, 476 (2001)
76.16 E. Timmermans, P. Tommasini, M. Hussein,
A. Kerman: Feshbach resonances in atomic
Bose-Einstein condensates, Phys. Rep. C315,199
(1999)
76.17 J. Javanainen, M. Mackie: Coherent photoassocia-
tion of a Bose-Einstein condensate, Phys. Rev. A
59, R3186 (1999)
76.18 S. J. J. M. F. Kokkelmans, M. J. Holland: Ramsey
fringes in a Bose–Einstein condensate between
atoms and molecules, Phys. Rev. Lett. 89,180401
(2002)
76.19 M. Mackie, K.-A. Suominen, J. Javanainen: Mean-
field theory of Feshbach-resonant interactions in
85
Rb condensates, Phys. Rev. Lett. 89,180403
(2002)
76.20 R. Wynar, R. S. Freeland, D. J. Han, C. Ryu,
D. J. Heinzen: Molecules in a Bose-Einstein con-
densate, Science 287, 1016 (2000)
76.21 E. A. Donley, N. R. Claussen, S. T. Thompson,
C. E. Wieman: Atom-molecule coherence in a Bose-
Einstein condensate, Nature 417, 529 (2002)
76.22 K. Xu, T. Mukaiyama, J. R. Abo-Shaeer, J. K. Chin,
D. E. Miller, W. Ketterle: Formation of quantum-
degenerate sodium molecules, Phys. Rev. Lett. 91,
210402 (2003)
76.23 M. Holland, S. J. J. M. F. Kokkelmans, M. L. Chiofalo,
R. Walser: Resonance superfluidity in a quantum
Part F 76