AUTOCORRELATION
9
============================================================
Dependent Variable: LGHOUS
Method: Least Squares
Sample(adjusted): 1960 1994
Included observations: 35 after adjusting endpoints
Convergence achieved after 6 iterations
LGHOUS=C(1)*(1-C(2))+C(2)*LGHOUS(-1)+C(3)*LGDPI-C(2)*C(3)
*LGDPI(-1)+C(4)*LGPRHOUS-C(2)*C(4)*LGPRHOUS(-1)
============================================================
CoefficientStd. Errort-Statistic Prob.
============================================================
C(1) 6.131576 0.727244 8.431251 0.0000
C(2) 0.972488 0.004167 233.3567 0.0000
C(3) 0.275879 0.078318 3.522532 0.0013
C(4) -0.303387 0.085802 -3.535896 0.0013
============================================================
R-squared 0.999695 Mean dependent var 6.017555
Adjusted R-squared 0.999665 S.D. dependent var 0.362063
S.E. of regression 0.006622 Akaike info criter-7.089483
Sum squared resid 0.001360 Schwarz criterion -6.911729
Log likelihood 128.0660 F-statistic 33865.14
Durbin-Watson stat 1.423030 Prob(F-statistic) 0.000000
============================================================
============================================================
Dependent Variable: LGHOUS
Method: Least Squares
Sample(adjusted): 1960 1994
Included observations: 35 after adjusting endpoints
Convergence achieved after 24 iterations
============================================================
Variable CoefficientStd. Errort-Statistic Prob.
============================================================
C 6.131573 0.727241 8.431276 0.0000
LGDPI 0.275879 0.078318 3.522534 0.0013
LGPRHOUS -0.303387 0.085802 -3.535896 0.0013
AR(1) 0.972488 0.004167 233.3540 0.0000
============================================================
R-squared 0.999695 Mean dependent var 6.017555
Adjusted R-squared 0.999665 S.D. dependent var 0.362063
S.E. of regression 0.006622 Akaike info criter-7.089483
Sum squared resid 0.001360 Schwarz criterion -6.911729
Log likelihood 128.0660 F-statistic 33865.14
Durbin-Watson stat 1.423031 Prob(F-statistic) 0.000000
============================================================
Inverted AR Roots .97
============================================================
Exercise
13.3
Perform a logarithmic regression of expenditure on your commodity on income and relative
price, first using OLS and then using the option for AR(1) regression. Compare the coefficients
and standard errors of the two regressions and comment.
13.4 Autocorrelation with a Lagged Dependent Variable
Suppose that you have a model in which the dependent variable, lagged one time period, is used as one
of the explanatory variables (for example, a partial adjustment model). When this is the case,
autocorrelation is likely to cause OLS to yield inconsistent estimates.