652 Appendix R
Table R1 “Split and divide” expansion up to 12 steps.
u
n
= 1/
na
n
(u
n−1
−a
n−1
) p
n
q
n
p
n
/q
n
1/2q
2
n
1/2q
2
n
− Valid
0 1 1.721549000000000 1 1 1.00000000000000 7.215×10
−1
5.00×10
−1
−2.215×10
−1
No
1 1 1.385907263401380 2 1 2.00000000000000 2.785×10
−1
5.00×10
−1
2.215×10
−1
Ye s
2 2 2.591296134687970 5 3 1.66666666666667 5.488×10
−2
5.56×10
−2
6.726×10
−4
Ye s
3 1 1.691199961128960 7 4 1.75000000000000 2.845×10
−2
3.13×10
−2
2.800×10
−3
Ye s
4 1 1.446759340620720 12 7 1.71428571428571 7.264×10
−3
1.02×10
−2
2.940×10
−3
Ye s
5 2 2.238341561276870 31 18 1.72222222222222 6.726×10
−4
1.54×10
−3
8.706×10
−4
Ye s
6 4 4.195659349727770 136 79 1.72151898734177 3.065×10
−5
8.01×10
−5
4.947×10
−5
Ye s
7 5 5.110923660900250 711 413 1.72154963680387 0.000×10
0
2.93×10
−6
2.931×10
−6
Ye s
8 9 9.015209125664090 6535 3796 1.72154899894626 6.379×10
−7
3.47×10
−8
−6.032×10
−7
No
9 65 65.749999183803000 425486 247153 1.72154900001214 6.368×10
−7
8.19×10
−12
−6.368×10
−7
No
10 1 1.333334784351880 432021 250949 1.72154899999602 6.368×10
−7
7.94×10
−12
−6.368×10
−7
No
11 2 2.999986940889930 1289528 749051 1.72154900000133 6.368×10
−7
8.91×10
−13
−6.368×10
−7
No
= 1 +
1
1 + 0.385907263401380
= 1 +
1
1 +
1
1
0.385907263401380
= 1 +
1
1 +
1
2.591296134687970
= 1 +
1
1 +
1
2 + 0.591296134687970
= ...
The results of this “split and divide” expansion up to 12 steps are summarized in
Table R1. For each step n, the table lists the expansion coefficient a
n
=u
n
, the ratio
u
n
= 1/(u
n−1
− a
n−1
), starting from u
0
= x, the integer numbers p
n
, q
n
as defined
by Eq. (R2), the ratio p
n
/q
n
, the error =|p
n
/q
n
− ϕ|, the upper bound 1/2q
2
n
in
Eq. (R11), and the difference 1/2q
2
n
− . If this difference is negative, this means that
the condition in Eq. (R11) is not valid, and hence that p
n
/q
n
is not convergent on ϕ.We
observe from Table R1 that for n ≥ 1 the condition is valid up to the order n = 7, which
yields six convergents. The last convergent, p
7
/q
7
= 711/413, is the exact definition
of ϕ. The algorithm has, thus, made it possible to determine ϕ = p/q unambiguously
given the approximation ˜ϕ and its known accuracy.