4.1 The restricted three–body problem 67
4.1.3 The planar, elliptic, restricted three–body problem
If we assume that P
3
orbits around P
1
on an elliptic orbit with eccentricity e
,the
corresponding motion is described by a Hamiltonian function with three degrees of
freedom; if ψ denotes the longitude of P
3
and Ψ is the conjugated action variable,
the Hamiltonian of the elliptic case is given by
H(L, G, Ψ,,g,ψ)=−
1
2L
2
+Ψ+εR(L, G, , g, ψ;e
) ,
where R(L, G, , g, ψ;e
) depends parametrically on e
and, in normalized units, ε
is the primaries mass–ratio. Up to constants, the first few Fourier coefficients of
the series expansion of the perturbing function are the following:
R(L, G, , g, ψ)=
= −
L
4
4
5
2
+
9
16
L
4
−
3
2
G
2
L
2
+
3
2
e
2
+ L
4
e
2
1+
9
8
L
4
cos()
−
3
8
L
6
1+
5
8
L
4
cos( + g −ψ)+
L
4
4
e(9 + 5L
4
) cos( +2g − 2ψ)
−
L
4
4
3+
5
4
L
4
cos(2 +2g − 2ψ) −
3
4
L
4
ecos(3 +2g − 2ψ)
−
5
8
L
6
1+
7
16
L
4
cos(3 +3g − 3ψ) −
35
64
L
8
cos(4 +4g − 4ψ)
−
63
128
L
10
cos(5 +5g − 5ψ) −L
4
3
4
e
+
45
64
L
4
e
cos(ψ)
−L
4
21
8
e
+
45
32
e
L
4
cos(2 +2g − 3ψ)
−L
4
−
3
8
e
+
5
32
e
L
4
cos(2 +2g − ψ)+...
4.1.4 The inclined, circular, restricted three–body problem
We assume that the motion of P
3
around P
1
is circular, but we let the planes of
the orbits of P
2
and P
3
have a non–zero mutual inclination i. Using the spatial
Delaunay variables (L, G, H, , g, h) introduced in Chapter 3, denoting with ψ the
longitude of P
3
, the Hamiltonian function takes the form:
H(L, G, H, , g, h, ψ)=−
1
2L
2
− H + εR(L, G, H, , g, h, ψ) ,
where, setting γ =
1
2
−
H
2G
, up to constants the first few terms of the Fourier
expansion of the perturbing function are given by