References 251
[23] A. Celletti, Analysis of resonances in the spin-orbit problem in Celestial Mechanics:
The synchronous resonance (Part I), J. Applied Math. and Physics (ZAMP) 41,
174–204 (1990)
[24] A. Celletti, Construction of librational invariant tori in the spin–orbit problem, J.
Applied Math. and Physics (ZAMP) 45, 61–80 (1993)
[25] A. Celletti, L. Chierchia, Rigorous estimates for a computer–assisted KAM theory,
J. Math. Phys. 28, 2078–2086 (1987)
[26] A. Celletti, L. Chierchia, Construction of analytic KAM surfaces and effective sta-
bility bounds, Commun. in Math. Physics 118, 119–161 (1988)
[27] A. Celletti, L. Chierchia, Invariant curves for area–preserving twist maps far from
integrable, J. Stat. Phys. 65, 617–643 (1991)
[28] A. Celletti, L. Chierchia, A constructive theory of Lagrangian tori and computer–
assisted applications, Dynamics Reported (C.K.R.T. Jones, U. Kirchgraber, H.O.
Walther Managing Editors), Springer–Verlag, 4 (New Series), 60–129 (1995)
[29] A. Celletti, L. Chierchia, Construction of stable periodic orbits for the spin–orbit
problem of Celestial Mechanics, Reg. Chaotic Dyn. 3, no. 3, 107–121 (1998)
[30] A. Celletti, L. Chierchia, KAM tori for N –body problems (a brief history), Cel.
Mech.Dyn.Astr.95, no. 1, 117–139 (2006)
[31] A. Celletti, L. Chierchia, KAM stability and Celestial Mechanics, Memoirs Ameri-
can Mathematical Society 187, no. 878 (2007)
[32] A. Celletti, L. Chierchia, Quasi–periodic attractors in Celestial Mechanics, Arch.
Rat. Mech. Anal. 191, no. 2, 311–345 (2009)
[33] A. Celletti, C. Falcolini, Construction of invariant tori for the spin–orbit problem
in the Mercury–Sun system, Cel. Mech. Dyn. Astr. 53, 113–127 (1992)
[34] A. Celletti, L. Ferrara, An application of the Nekhoroshev theorem to the restricted
three–body problem, Cel. Mech. Dyn. Astr. 64, 261–272 (1996)
[35] A. Celletti, C. Froeschl´e, On the determination of the stochasticity threshold of
invariant curves, Int. J. Bifurcation and Chaos 5, no. 6, 1713–1719 (1995)
[36] A. Celletti, C. Froeschl´e, E. Lega, Dissipative and weakly–dissipative regimes in
nearly–integrable mappings, Discrete and Continuous Dynamical Systems – Series
A 16, no. 4, 757–781 (2006)
[37] A. Celletti, C. Froeschl´e, E. Lega, Dynamics of the conservative and dissipative
spin–orbit problem, Planetary and Space Science 55, 889–899 (2007)
[38] A. Celletti, A. Giorgilli, On the stability of the Lagrangian points in the spatial
restricted problem of three bodies, Cel. Mech. Dyn. Astr. 50, 31–58 (1991)
[39] A. Celletti, M. Guzzo, Cantori of the dissipative sawtooth map, Chaos 19, 013140,
pp. 6 (2009)
[40] A. Celletti, R.S. MacKay, Regions of non–existence of invariant tori for spin–orbit
models, Chaos 17, 043119, pp. 12 (2007)
[41] A. Celletti, V.V. Sidorenko, Some properties of the dumbbell satellite attitude dy-
namics, Cel. Mech. Dyn. Astr. 101,
105–126 (2008)
[42] Q. Chen,
R.S. MacKay, J.D. Meiss, Cantori for symplectic maps, J. Phys. A: Math.
Gen. 23, L1093–L1100 (1990)
[43] A. Chenciner, Bifurcations de points fixes elliptiques. II. Orbites periodiques et en-
sembles de Cantor invariants, Inventiones Mathematicae 80, 81–106 (1985)
[44] A. Chenciner, R. Montgomery, A remarkable periodic solution of the three body
problem in the case of equal masses, Annals of Mathematics 152, 881–901 (2000)
[45] C.Q. Cheng, J. Yan, Existence of diffusion orbits in a priori unstable Hamiltonian
systems, J. Diff. Geom. 67, no. 3, 457–518 (2004)
[46] L. Chierchia, G. Gallavotti, Drift and diffusion in phase space, Ann. Inst. H.
Poincar´e 60, no. 1, 1–144 (1994)