[13] J. Ginibre, A. Soffer, and G. Velo. The global Cauchy problem for the critical
nonlinear wave equation. J. Funct. Anal., 110(1):96–130, 1992.
[14] J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equa-
tion. J. Funct. Anal., 133(1):50–68, 1995.
[15] R. T. Glassey. On the blowing up of solutions to the Cauchy problem for
nonlinear Schr¨odinger equations. J. Math. Phys., 18(9):1794–1797, 1977.
[16] M. G. Grillakis. Regularity and asymptotic behaviour of the wave equation
with a critical nonlinearity. Ann. of Math. (2), 132(3):485–509, 1990.
[17] M. G. Grillakis. Regularity for the wave equation with a critical nonlinearity.
Comm. Pure Appl. Math., 45(6):749–774, 1992.
[18] M. G. Grillakis. On nonlinear Schr¨odinger equations. Comm. Partial Differ-
ential Equations, 25(9-10):1827–1844, 2000.
[19] L. H¨ormander. The analysis of linear partial differential operators. III, vol-
ume 274 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1985. Pseu-
dodifferential operators.
[20] L. Kapitanski. Global and unique weak solutions of nonlinear wave equations.
Math. Res. Lett., 1(2):211–223, 1994.
[21] M. Keel and T. Tao. Endpoint Strichartz estimates. Amer.J.Math.,
120(5):955–980, 1998.
[22] C. Kenig. Global well-posedness and scattering for the energy critical focus-
ing non-linear Schr¨odinger and wave equations. Lecture Notes for a mini-
course given at “Analyse des ´equations aux deriv´ees partialles”, Evian-les-
bains, June 2007.
[23] C. Kenig and F. Merle. Global well-posedness, scattering and blow-up for the
energy-critical, focusing, non-linear Schr¨odinger equation in the radial case.
Invent. Math., 166(3):645–675, 2006.
[24] C. Kenig and F. Merle. Global well-posedness, scattering and blow-up for the
energy critical focusing non-linear wave equation. Acta Math., 201(2):147–
212, 2008.
[25] C. Kenig and F. Merle. Scattering for
˙
H
1/2
bounded solutions to the cubic
defocusing NLS in 3 dimensions. Trans. Amer. Math. Soc., 362(4):1937–1962,
2010.
[26] C. Kenig, G. Ponce, and L. Vega. Well-posedness and scattering results for the
generalized Korteweg-de Vries equation via the contraction principle. Comm.
Pure Appl. Math., 46(4):527–620, 1993.
[27] S. Keraani. On the defect of compactness for the Strichartz estimates of the
Schr¨odinger equations. J. Differential Equations, 175(2):353–392, 2001.
Bibliography 147