[13] Chernov, N., Markarian, R., Chaotic Billiards, AMS, 2006.
[14] Deimling, K., Nonlinear Functional Analysis, Springer-Verlag, 1988.
[15] Desvillettes, L., Convergence to equilibrium in large time for Boltzmann and
BGK equations, Arch. Rational Mech. Anal. 110 (1990), 73–91.
[16] Desvillettes, L., Villani, C., On the trend to global equilibrium for spatially
inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math. 159
(2005), no. 2, 245–316.
[17] Diperna, R., Lions, P.-L., On the Cauchy problem for the Boltzmann equa-
tion, Ann. of Math. 130 (1989), 321–366.
[18] Diperna, R., Lions, P.-L., Global weak solution of Vlasov–Maxwell systems,
Comm. Pure Appl. Math. 42 (1989), 729–757.
[19] Esposito, L., Guo, Y., Marra, R., Phase transition in a Vlasov–Boltzmann
system, Commun. Math. Phys. 296 (2010), 1–33.
[20] Guo, Y., The Vlasov–Poisson–Boltzmann system near Maxwellians, Comm.
Pure Appl. Math. 55 (2002) no. 9, 1104–1135.
[21] Guo, Y., The Vlasov–Maxwell–Boltzmann system near Maxwellians, Invent.
Math. 153 (2003), no. 3, 593–630.
[22] Guo, Y., Singular solutions of the Vlasov–Maxwell system on a half line, Arch.
Rational Mech. Anal. 131 (1995), no. 3, 241–304.
[23] Guo, Y., Regularity for the Vlasov equations in a half-space, Indiana Univ.
Math. J. 43 (1994), no. 1, 255–320.
[24] Guo, Y., Jang, J., and Jiang, N., Acoustic limit of the Boltzmann equation
in optimal scaling, Comm. Pure Appl. Math. 63 (2010), no. 3, 337–361.
[25] Glassey, R., The Cauchy Problems in Kinetic Theory, SIAM, 1996.
[26] Glassey, R., Strauss, W. A., Asymptotic stability of the relativistic Max-
wellian, Publ. Res. Inst. Math. Sci. 29 (1993), no. 2, 301–347.
[27] Guo, Y., Strauss, W. A., Instability of periodic BGK equilibria, Comm. Pure
Appl. Math. 48 (1995), no. 8, 861–894.
[28] Grad, H., Principles of the kinetic theory of gases, Handbuch der Physik XII
(1958), 205–294.
[29] Grad, H., Asymptotic theory of the Boltzmann equation, II. Rarefied gas
dynamics, 3rd Symposium, Paris, 1962, 26–59.
[30] Guiraud, J. P., An H-theorem for a gas of rigid spheres in a bounded domain.
Th´eories cin´etique classique et relativiste (1975), G. Pichon, ed., CNRS, Paris,
29–58.
Bibliography 113