B.2 Primitive Equations and penalty functional 213
S
u
, S
v
, S
T
, S
q
, S
l
prior estimates of sources of zonal momentum,
meridional momentum, heat, humidity, mass
u≡
1
!
0
udσ, u
≡ u −u vertical average, fluctuation
ρ
u
,ρ
v
,ρ
T
,ρ
q
,ρ
l
,ρ
σ
dynamical residuals, or errors in prior estimates
of sources
W
u
, W
T
, W
q
, W
#
, W
l
, W
σ
weights for residuals (inverses of prior estimates
of covariances of dynamical residuals)
Q
u
, Q
T
, Q
q
, Q
#
, Q
l
, Q
σ
prior estimates of covariances of dynamical
residuals
µ, θ, κ, χ, ξ, ω weighted residuals, or adjoint variables
J = J [u, ˙σ,#,T, q, l] penalty functional, or estimator for residuals
F ≡ ∂ T /∂T
v
= 1 + (
−1
− 1)q moisture factor
D ≡
1
a
0
cos θ
u
λ
+
(v cos θ )
θ
a
0
cos θ
+
∂ ˙σ
∂σ
−
˙σ
σ
divergence
[δu], [δv], [δ#], [δT ], Euler–Lagrange equations for arbitrary variations
[δ ˙σ ], [δl], [δq]ofu,v,#,T, ˙σ,l, q
u
I
, T
I
, q
I
, l
I
prior estimates of initial values for u, T, q, l
V
u
, V
T
, V
q
, V
l
weights for residuals or errors in prior estimates of
initial values (inverses of initial error covariances)
O
u
, O
T
, O
q
, O
l
prior estimates of initial error covariances for
u, T, q, l
#
∗
, V
∗
, O
∗
orography, weight, error covariance
•, ◦ four-dimensional and three-dimensional inner
products
r
n
u
, r
n
v
, r
n
T
, r
n
#
, r
n
q
, r
n
l
, r
n
˙σ
representers for n
th
iterate of Euler–Lagrange
equations
a
n
u
, a
n
v
, a
n
T
, a
n
φ
, a
n
q
, a
n
l
, a
n
˙σ
adjoint representers
B.2
Primitive Equations and penalty functional
u
t
+
u
a
0
cos φ
u
λ
+
v
a
0
u
φ
+ ˙σ u
σ
−
f +
u
a
0
tan φ
v
+
1
a
0
cos φ
(#
λ
+ R
d
T
v
l
λ
) − S
u
≡ ρ
u
(B.2.1)
v
t
+
u
a
0
cos φ
v
λ
+
v
a
0
v
φ
+ ˙σv
σ
+
f +
u
a
0
tan φ
u
+
1
a
0
(#
φ
+ R
d
T
v
l
φ
) − S
v
≡ ρ
v
(B.2.2)