The Wave Equation in Two Spatial Dimensions 459
> subs({r=a,m=2},BesselJ(mu[m],lambda[m,n]*r))=0;
BesselJ
2,λ
2,n
= 0 (7.129)
> plot(BesselJ(2,v),v=0..20,thickness=10);
0.4
0.3
0.2
20.1
20.2
20.3
0
0.1
510
v
15 20
Figure 7.11
If we set v = λa, then the eigenvalues λ
2,n
are the roots of the equation J(2,v) shown in
Figure 7.11. A few of these eigenvalues are evaluated here using the Maple fsolve command
> lambda[2,1]:=(1/a)*fsolve(BesselJ(2,v)=0,v=1..6);
λ
2,1
:= 5.135622302 (7.130)
> lambda[2,2]:=(1/a)*fsolve(BesselJ(2,v)=0,v=6..10);
λ
2,2
:= 8.417244140 (7.131)
> lambda[2,3]:=(1/a)*fsolve(BesselJ(2,v)=0,v=10..14);
λ
2,3
:= 11.61984117 (7.132)
First few terms in sum
> u(r,theta,t):=sum(u[2,n](r,theta,t),n=1..1):
ANIMATION
> u(x,y,t):=subs({r=sqrt(xˆ2+yˆ2),theta=arccos(x/sqrt(xˆ2+yˆ2))},u(r,theta,t))*
Heaviside(1-sqrt(xˆ2+yˆ2)):
> animate3d(u(x,y,t),x=-a..a,y=0..a,t=0..5,axes=framed,thickness=1);
The preceding animation command illustrates the spatial-time-dependent solution for u(r,θ,t).
The animation sequence in Figures 7.12 and 7.13 shows snapshots of the animation at the times
t = 0 and t = 4.