The Wave Partial Differential Equation 239
Series solution
> u(x,t):=u[0](x,t)+Sum(u[n](x,t),n=1..infinity);
u(x, t) :=
∞
n=1
e
−
1
10
t
⎛
⎝
−
24
√
2(−1 +(−1)
n
) cos
1
20
25n
2
π
2
−4 t
n
4
π
4
(4.50)
−
48
√
2(−1 +(−1)
n
) sin
1
20
25n
2
π
2
−4 t
n
4
π
4
25n
2
π
2
−4
⎞
⎠
√
2 cos(nπx)
First few terms of sum
> u(x,t):=u[0](x,t)+sum(u[n](x,t),n=1..3):
ANIMATION
> animate(u(x,t),x=a..b,t=0..20,thickness=3);
The preceding animation command illustrates the spatial-time-dependent solution for u(x, t).
Of particular note is that since the bar is initially extended symmetrically and both ends of the
bar are unsecured, the subsequent vibrations indicate a symmetric longitudinal oscillation of
the bar about its center. The following animation sequence in Figure 4.4 shows snapshots of the
animation at times t = 0, 1, 2, 3, 4, and 5.
ANIMATION SEQUENCE
> u(x,0):=subs(t=0,u(x,t)):u(x,1):=subs(t=1,u(x,t)):
> u(x,2):=subs(t=2,u(x,t)):u(x,3):=subs(t=3,u(x,t)):
> u(x,4):=subs(t=4,u(x,t)):u(x,5):=subs(t=5,u(x,t)):
> plot({u(x,0),u(x,1),u(x,2),u(x,3),u(x,4),u(x,5)},x=a..b,thickness=10);
x
0.2
20.8
20.6
20.4
20.2
0
0.2
0.4
0.6
0.8
0.4 0.6 0.8 1
Figure 4.4
EXAMPLE 4.6.4: We seek the wave distribution u(x, t) for longitudinal vibrations in a rigid
bar over the finite interval I ={x |0 <x<1}. The left end of the bar is secure, and the right