Sturm-Liouville Eigenvalue Problems and Generalized Fourier Series 109
> lambda[1]:=(1/b*(fsolve((tan(v)−(h*b)/v),v=0..1)))ˆ2;
λ
1
:= 0.7401738844 (2.128)
> lambda[2]:=(1/b*(fsolve((tan(v)−(h*b)/v),v=1..4)))ˆ2;
λ
2
:= 11.73486183 (2.129)
> lambda[3]:=(1/b*(fsolve((tan(v)−(h*b)/v),v=4..7)))ˆ2;
λ
3
:= 41.43880785 (2.130)
> lambda[4]:=(1/b*(fsolve((tan(v)−(h*b)/v),v=7..10)))ˆ2;
λ
4
:= 90.80821420 (2.131)
> lambda[5]:=(1/b*(fsolve((tan(v)−(h*b)/v),v=10..13)))ˆ2;
λ
5
:= 159.9032889 (2.132)
First five terms of expansion
> Series:=eval(sum(F(n)*phi[n](x),n=1..5)):
> plot({Series,f(x)},x=a..b,thickness=10);
x
0 0.2 0.4 0.6 0.8 1
0
0.2
0.4
0.6
0.8
1
Figure 2.10
The two curves of Figure 2.10 depict the function f(x) and its Fourier series approximation in
terms of the orthonormal eigenfunctions for the particular operator and boundary conditions
given earlier. Note that f(x) does not satisfy either of the given boundary conditions at the left
or right end points. The convergence is pointwise.
EXAMPLE 2.5.6: Consider the Euler operator with Robin and Dirichlet conditions. We seek
the eigenvalues and corresponding orthonormal eigenfunctions for the Euler differential
equation [Sturm-Liouville type for p(x) = 1,q(x)= 0,w(x)= 1] over the interval