12Amaro Forests - Chap 10 25/7/03 11:05 am Page 121
121 Modelling Dominant Height Growth
Another solution would be to build site index curves for a fixed density and,
thereafter, to correct it with a function of the Hart–Becking index.
In the growth model SPS, Arney (1985) used a negative effect of stand density
on dominant height growth for the highest stand density.
In the ‘tree–distance independent’ growth model built for Corsican pine in
France (Mer
edieu, 1998), the dominant height growth relationship included a stand
density effect in addition to age at breast height and site index effects.
Diameter growth has been described and fitted as the product of potential
gr
owth (POT), and reduction factors, or modifiers, to quantify global competition
within the stand (RED1) and the status of the tree in the stand (RED2).
DIAMETER GROWTH = POT RED1
RED2
The potential term can be related to site fertility through dominant height incre-
ment. In or
der to take the influence of density into account, instead of using real
dominant increment, we could use the corrected term of dominant height increment
with the optimum density index.
Thus, the potential term of diameter growth could account for site fertility, age
and period of gr
owth through the dominant height increment.
Further studies are needed to improve the relationship between density index
and dominant height gr
owth and to connect this relationship with the potential
term of the diameter growth relation.
References
Arney, J.D. (1974) An individual tree growth model for stand simulation in Douglas-fir. In:
Fries, J. (ed.) Growth Models for Tree and Stand Simulation. Research Notes, Royal College of
Forestry, Stockholm 30, 38–46.
Arney, J.D. (1985) A modelling strategy for the growth projection of managed stands. Canadian
Journal of Forest Research 15, 511–518.
Braathe, P. (1957) Thinning in Even-aged Stands: a Summary of European Literature. Faculty of
Forestry, University of New Brunswick, 92 pp.
Cieszewski, C.J. and Bella, I.E. (1993) Modeling density-related lodgepole pine height growth,
using Czarnowski’s stand dynamic theory. Canadian Journal of Forest Research 23,
2499–2506.
Illy, G. and Lemoine, B. (1970) Densité de peuplement, concurrence et coopération chez le pin
maritime. I. Premiers résultats d’une plantation à espacement variable. Annales des
Sciences Forestières 27, 127–155.
Inventaire Forestier National (2002) Available at: www.ifn.fr
Krajicek, J.E., Brinkman, K.A. and Gingrich, S.F. (1961) Crown competition: a measure of den-
sity. Forest Science 7, 35–42.
Lemoine, B. (1980) Densité de peuplement, concurrence et coopération chez le pin maritime. II.
Résultats à 5 et 10 ans d’une plantation à espacement variable. Annales des Sciences
Forestières 37, 217–237.
Lloyd, F.T. and Jones, E.P. (1982) Density effects on height growth and its implications for site
prediction and growth projection. In: 2nd Biennial Southern Silvicultural Research
Conference, USDA GTR SE-24. 4–5 November, Atlanta, Georgia, pp. 329–333.
Meredieu, C. (1998) Croissance et branchaison du Pin laricio (Pinus nigra Arn. ssp. laricio (Poir.)
Maire): élaboration et évaluation d’un système de modèles pour la prévision de carac-
téristiques des arbres et du bois. MSc thesis, Université Cl. Bernard Lyon I, Lyon, France.
Ottorini, J.M. (1978) Aspects de la notion de densité et croissance des arbres en peuplement.
Annales des Sciences Forestières 35, 299–320.
Pardé, J. and Bouchon, J. (1988) Dendrométrie, 2nd edn. In: ENGREF (ed.), Nancy, France, 328 pp.
Reineke, L.H. (1933) Perfecting a stand-density index for even-aged forests. Journal of
Agricultural Research 46, 627–638.