Sunden CH004.tex 10/9/2010 15: 9 Page 168
168 Computational Fluid Dynamics and Heat Transfer
Chang[48].The parametersused forthe presentinvestigation areRa=0.72×10
3
,
Pr=0.72, Re=50, λ =2.8 in the porous region and λ =1 in the free fluid region,
ε =0.8. When y is small, there is a large velocity difference at the interface of the
compositesystem(Figure4.38).Wheny increases,theflowdischargeintheporous
layer decreases, and the peak of the fluid velocity profile moves to the central axis
of the vertical parallel-plate channel.
References
[1] Denham, M. K., and Patrik, M. A. Laminar flow over a downstream-facing in a two-
dimensional flow channel. Transactions of the Institution of Chemical Engineers, 52,
pp. 361–367, 1974.
[2] Aung, W. An experimental study of laminar heat transfer downstream of backsteps.
Journal of HeatTransfer, 105, pp. 823–829, 1983.
[3] Ichinose,K.,Tokunaga,H.,andSatofuka,N.Numericalsimulationoftwo-dimensional
backward-facing step flows.Transactions of JSME B, 57(543), pp. 3715–3721, 1991.
[4] de Sampaio, P.A. B., Lyra, P. R. M., Morgan, K., and Weatherill, N. P. Petrov–Galerkin
solutions of the incompressible Navier–Stokes equations in primitive variables with
adaptive remeshing. Computer Methods in Applied Mechanics and Engineering, 106,
pp. 143–178, 1993.
[5] Massarotti,N.,Nithiarasu,P., andZienkiewicz,O.C.Characteristic-Based-Split(CBS)
algorithm for incompressible flow problems with heat transfer. International Journal
for Numerical Methods in Heat and Fluid Flow, 8, pp. 969–990, 1998.
[6] Morgan,K.,Weatherill,N.P.,Hassan,O.,Brookes,P.J.,Said,R.,andJones,J.Aparallel
frameworkfor multidisciplinary aerospace engineering simulations using unstructured
meshes.InternationalJournalforNumericalMethods inFluids,31,pp.159–173,1999.
[7] Spalart, P. R., and Allmaras, S. R.A one-equation turbulence model for aerodynamic
flows.AIAA 30th Aerospace Sciences Meeting,AIAA paper 92-0439, 1992.
[8] Nithiarasu, P., and Liu, C.-B. An artificial compressibility based characteristic based
split (CBS) scheme forsteady andunsteady turbulent incompressible flows. Computer
Methods in Applied Mechanics and Engineering, 195, pp. 2961–2982, 2006.
[9] Nithiarasu, P., Liu, C.-B., and Massarotti, N. Laminar and turbulent flow calculations
through a model human upper airway using unstructured meshes. Communications in
Numerical Methods in Engineering, 23, pp. 1057–1069, 2007.
[10] Denham, M. K., Briard, P., andPatrick,M.A.Adirectionally-sensitivelaseranemome-
terforvelocitymeasurements in highlyturbulentflows.Journal of Physics E:Scientific
Instruments, 8, pp. 681–683, 1975.
[11] Gemci,T., Corcoran,T.E.,Yakut, K., Shortall, B., and Chigier,N.Spray dynamics and
depositionofinhaled medications in the throat, ILASS-Europe,Zurich, 2–6 September,
2001.
[12] Li,W.-I., Perzl, M.,Heyder, J., Langer,R., Brain, J. D., Englmeier,K.-H., Niven,R.W.,
and Edwards, D. A. Aerodynamics and aerosol particle deagg regation phenomena in
model oral-pharyngeal cavities. Journal ofAerosol Science, 27, pp. 1269–1286, 1996.
[13] Li,W.-I., and Edwards, D.A.Aerosol particle transport and deaggregation phenomena
in the mouth and throat. Advanced Drug Delivery Reviews, 26, pp. 41–49, 1997.
[14] Martonen,T.B.,Zhang,Z.,Yue, G., andMusante,C.J. 3-Dparticletransportwithinthe
human upper respiratory tract. Journal of Aerosol Science, 33, pp. 1095–1110, 2002.