89
quantum
signal processing. Radio Eng Electron Physics, 19(7):1391- 1395,
1974.
11.
J.
A. Smolin C. H.
Bennett,
P.
W.
Shor
and
A.
V.
Thapliyal.
Entangle-
ment
ass
isted
classical
capacity
of
noisy
quantum
channels. Phys. Rev. Lett.,
83:3081- 3084, 1999.
12.
N.
Cerf
and
G.
Adami.
Von
neumann
capacity
of noisy
quantum
channe
ls.
Phys. Rev, A 56:3470- 3483, 1997.
13. M. B. Hastings. A
counterexample
to
additivity
of
minimum
output
entropy.
Nature Physics, 5:255, 2009.
14. P.
Hayden
an
d A.
Winter.
Counterexample
to
the
maximal
p-norm
multi-
plic
ativity
conjecture
for all p >. arXiv.org:0807.4753, 2008.
15.
A.
S.
Holevo.
Bounds
for
the
quantity
of
information
transmitted
by a
quan-
tum
comm
unication
channe
l.
Problems
of
Information Transmission, 9:177-
183, 1973.
16.
C.
King
and
M. B. Ruskai.
Minimal
entropy
of
states
eme
rging from noisy
quantum
channels.
IEEE
Trans. Inf. Thy., 47:192-209, 2001.
17. D.
S.
Lebedev
and
L. B. Levitin.
Information
transmission
by
electromagnetic
field. Information and Control, pages 1- 22, 1966.
18. A. Lesniewski
and
M. Ruskai.
Monotone
riemanian
metrics
and
relative en-
tropy
of
non-commutative
probability
spaces. math-ph/9808016, 1998.
19. D.
Petz.
Quasi-entropies
for finite
quantum
systems
. Reports on Mathematical
Physics,
23:57- 65, 1984.
20. B. Schumacher.
Sending
entanglement
through
noisy
quantum
channels.
Phys. Rev. A, 54:2614- 2628, 1996.
21.
C. E.
Shannon
. A
mathematical
theory
of
communication.
Bell Syst. Tech.
Jour.,
27:379- 423, 1948.
22.
P.
W.
Shor. Equivalence
of
additivity
question
in
quantum
information
the-
ory. Comm. Math. Phys., 246:453-472, 2004.
23.
R.
L.
Stratonivich.
On
mutual
information
and
the
capacity
of
quantum
channels. Izvestia Vuzov: Radiophysics, 4:15-24, 1965.
24. R. L.
Stratonovich.
Mutial
infromation
of
quantum
gaussian
variables. Izves-
tia Vuzov: Radiophysics,
8:116; 129, 1965.
25. R. L.
Stratonovich.
On
transmition
of
information
via
quantum
channels.
Problems
of
Information Transmitian, 45:150-160, 1966.