СПб.: Лань, 2013. — 448 с.
Книга посвящена рассмотрению центральных вопросов, определяющих
современные подходы к моделированию, анализу и синтезу линейных
стационарных систем с обратными связями. Эти системы в настоящее
время исключительно широко применяются для обработки сигналов и для
управления динамическими объектами различной природы. Во главу угла
в основном поставлены те аспекты теории и практические приемы,
которые в недостаточной мере отражены в отечественных публикациях.
Важную роль в изложении играет компьютерная поддержка
рассматриваемых вопросов, которая базируется на широко
распространенной интегрированной среде MATLAB–Simulink.
Книга может быть использована как учебное пособие для студентов старших курсов и аспирантов факультетов прикладной математики, обучающихся в бакалавриате и магистратуре по направлениям «Прикладная математика и информатика» и «Фундаментальная информатика и информационные технологии». Книга может быть полезна и для специалистов с высшим образованием, работающих в области проектирования систем управления движением динамических объектов (в частности — морских судов различного назначения). Предисловие
Введение
Линейные системы и обратные связи
Линейное преобразование сигналов. Линейные операторы и уравнения свертки
Прохождение сигналов через линейные стационарные системы
Обратные связи и динамика замкнутых систем
Задачи для самостоятельного решения
Математические модели LTI-систем
Уравнения динамических объектов и их линеаризация
Представление LTI-систем в пространстве состояний с помощью ss-моделей
Представление LTI-систем в изображениях по Лапласу. Передаточные матрицы и tf-модели
Моделирование LTI-систем в среде MATLAB
— Программное представление LTI-систем на базе классов
— Формирование lti-объектов и доступ к их свойствам
— Взаимные преобразования и распаковка lti-объектов
— Операции над lti-объектами
— Простейшие функции для анализа lti-объектов
Задачи для самостоятельного решения
Цифровые системы и их модели
Прохождение дискретных сигналов через линейные системы
Математические модели DLTI-систем в виде разностных уравнений
Z-преобразование и математические модели DLTI-систем в z-области
Построение и преобразование математических моделей DLTI-систем в среде MATLAB
Задачи для самостоятельного решения
Вопросы анализа линейных систем
Режимы движения и динамическое тестирование управляемых объектов
Частотные характеристики линейных стационарных систем
Анализ управляемости и наблюдаемости LTI-систем
Анализ и характеристики устойчивости движений и систем
Задачи для самостоятельного решения
Характеристики качества процессов и систем
Классические характеристики качества динамических процессов
Характеристики качества линейных систем, определяемые матричными нормами
Нормы передаточных матриц и нормы сигналов для LTI-систем
Матричные нормы как характеристики качества цифровых систем
Задачи для самостоятельного решения
Аналитический подход к синтезу обратных связей
Аналитический синтез обратных связей на базе задач оптимизации
Параметрическая оптимизация с заданием допустимых динамических областей
Обеспечение заданной степени устойчивости регуляторами неполной структуры
Асимптотические наблюдатели и их оптимизация
Задачи для самостоятельного решения
Методы модального синтеза
Модальное управление с полной информацией о векторе состояния
Модальное управление по вектору измеряемых координат
Задачи модальной параметрической оптимизации
Задачи для самостоятельного решения
Методы LQR- и LQG-оптимизации
Задача LQR-оптимального синтеза линейных систем
Практические приемы решения задач LQR-оптимизации
Задача LQG-оптимизации с учетом внешних возмущений
Задачи оптимизации по нормам пространств H_2 и H_infinity
Алгебраические матричные уравнения Риккати
Задачи для самостоятельного решения
Среднеквадратичная оптимизация
Общая постановка проблемы среднеквадратичной оптимизации
Постановки SISO-задач среднеквадратичного оптимального синтеза
Оптимальные и гарантирующие регуляторы в SISO-задачах
Расчетные алгоритмы и примеры решения задач среднеквадратичного синтеза
Задачи для самостоятельного решения
Вопросы робастности LTI-систем
Основные понятия теории робастности
Неопределенности в моделях SISO-систем
Анализ робастной устойчивости SISO-систем
Робастная устойчивость системы автоматического управления курсом
Обобщение частотного метода построения границ робастной устойчивости для MIMO-систем
Задачи для самостоятельного решения
Приложение А. Среда MATLAB в задачах управления
Базовые особенности системы и ее применение для решения задач управления
Операции с матрицами
Операции с полиномами
Элементы двухмерной графики в среде MATLAB
Программирование на языке MATLAB
Задачи для самостоятельного решения
Приложение Б. Операторы в нормированных пространствах
Пространства Банаха и Гильберта во временной и частотной области
Линейные операторы в гильбертовых пространствах
Интерполяционная задача Неванлинны–Пика
Литература
Книга может быть использована как учебное пособие для студентов старших курсов и аспирантов факультетов прикладной математики, обучающихся в бакалавриате и магистратуре по направлениям «Прикладная математика и информатика» и «Фундаментальная информатика и информационные технологии». Книга может быть полезна и для специалистов с высшим образованием, работающих в области проектирования систем управления движением динамических объектов (в частности — морских судов различного назначения). Предисловие
Введение
Линейные системы и обратные связи
Линейное преобразование сигналов. Линейные операторы и уравнения свертки
Прохождение сигналов через линейные стационарные системы
Обратные связи и динамика замкнутых систем
Задачи для самостоятельного решения
Математические модели LTI-систем
Уравнения динамических объектов и их линеаризация
Представление LTI-систем в пространстве состояний с помощью ss-моделей
Представление LTI-систем в изображениях по Лапласу. Передаточные матрицы и tf-модели
Моделирование LTI-систем в среде MATLAB
— Программное представление LTI-систем на базе классов
— Формирование lti-объектов и доступ к их свойствам
— Взаимные преобразования и распаковка lti-объектов
— Операции над lti-объектами
— Простейшие функции для анализа lti-объектов
Задачи для самостоятельного решения
Цифровые системы и их модели
Прохождение дискретных сигналов через линейные системы
Математические модели DLTI-систем в виде разностных уравнений
Z-преобразование и математические модели DLTI-систем в z-области
Построение и преобразование математических моделей DLTI-систем в среде MATLAB
Задачи для самостоятельного решения
Вопросы анализа линейных систем
Режимы движения и динамическое тестирование управляемых объектов
Частотные характеристики линейных стационарных систем
Анализ управляемости и наблюдаемости LTI-систем
Анализ и характеристики устойчивости движений и систем
Задачи для самостоятельного решения
Характеристики качества процессов и систем
Классические характеристики качества динамических процессов
Характеристики качества линейных систем, определяемые матричными нормами
Нормы передаточных матриц и нормы сигналов для LTI-систем
Матричные нормы как характеристики качества цифровых систем
Задачи для самостоятельного решения
Аналитический подход к синтезу обратных связей
Аналитический синтез обратных связей на базе задач оптимизации
Параметрическая оптимизация с заданием допустимых динамических областей
Обеспечение заданной степени устойчивости регуляторами неполной структуры
Асимптотические наблюдатели и их оптимизация
Задачи для самостоятельного решения
Методы модального синтеза
Модальное управление с полной информацией о векторе состояния
Модальное управление по вектору измеряемых координат
Задачи модальной параметрической оптимизации
Задачи для самостоятельного решения
Методы LQR- и LQG-оптимизации
Задача LQR-оптимального синтеза линейных систем
Практические приемы решения задач LQR-оптимизации
Задача LQG-оптимизации с учетом внешних возмущений
Задачи оптимизации по нормам пространств H_2 и H_infinity
Алгебраические матричные уравнения Риккати
Задачи для самостоятельного решения
Среднеквадратичная оптимизация
Общая постановка проблемы среднеквадратичной оптимизации
Постановки SISO-задач среднеквадратичного оптимального синтеза
Оптимальные и гарантирующие регуляторы в SISO-задачах
Расчетные алгоритмы и примеры решения задач среднеквадратичного синтеза
Задачи для самостоятельного решения
Вопросы робастности LTI-систем
Основные понятия теории робастности
Неопределенности в моделях SISO-систем
Анализ робастной устойчивости SISO-систем
Робастная устойчивость системы автоматического управления курсом
Обобщение частотного метода построения границ робастной устойчивости для MIMO-систем
Задачи для самостоятельного решения
Приложение А. Среда MATLAB в задачах управления
Базовые особенности системы и ее применение для решения задач управления
Операции с матрицами
Операции с полиномами
Элементы двухмерной графики в среде MATLAB
Программирование на языке MATLAB
Задачи для самостоятельного решения
Приложение Б. Операторы в нормированных пространствах
Пространства Банаха и Гильберта во временной и частотной области
Линейные операторы в гильбертовых пространствах
Интерполяционная задача Неванлинны–Пика
Литература