• формат pdf
  • размер 3.86 МБ
  • добавлен 16 декабря 2011 г.
Rasmussen C.E., Williams C.K.I. Gaussian Processes for Machine Learning
Издательство MIT Press, 2006, -266 pp.

The book is primarily intended for graduate students and researchers in machine leaing at departments of Computer Science, Statistics and Applied Mathematics. As prerequisites we require a good basic grounding in calculus, linear algebra and probability theory as would be obtained by graduates in numerate disciplines such as electrical engineering, physics and computer science. For preparation in calculus and linear algebra any good university-level textbook on mathematics for physics or engineering such as Arfken [1985] would be fine. For probability theory some familiarity with multivariate distributions (especially the Gaussian) and conditional probability is required. Some background mathematical material is also provided in Appendix A.
The main focus of the book is to present clearly and concisely an overview of the main ideas of Gaussian processes in a machine leaing context. We have also covered a wide range of connections to existing models in the literature, and cover approximate inference for faster practical algorithms. We have presented detailed algorithms for many methods to aid the practitioner. Software implementations are available from the website for the book, see Appendix C. We have also included a small set of exercises in each chapter; we hope these will help in gaining a deeper understanding of the material.
In order limit the size of the volume, we have had to omit some topics, such as, for example, Markov chain Monte Carlo methods for inference. One of the most difficult things to decide when writing a book is what sections not to write. Within sections, we have often chosen to describe one algorithm in particular in depth, and mention related work only in passing. Although this causes the omission of some material, we feel it is the best approach for a monograph, and hope that the reader will gain a general understanding so as to be able to push further into the growing literature of GP models.
The book has a natural split into two parts, with the chapters up to and including chapter 5 covering core material, and the remaining sections covering the connections to other methods, fast approximations, and more specialized properties. Some sections are marked by an asterisk. These sections may be omitted on a first reading, and are not pre-requisites for later (un-starred) material.

Introduction
Regression
Classification
Covariance Functions
Model Selection and Adaptation of Hyperparameters
Relationships between GPs and Other Models
Theoretical Perspectives
Approximation Methods for Large Datasets
Further Issues and Conclusions
A Mathematical Background
B Gaussian Markov Processes
C Datasets and Code
Похожие разделы
Смотрите также

Duda R.O., Hart P.E., Stork D.G. Pattern classification (2nd edition)

  • формат djvu
  • размер 6.4 МБ
  • добавлен 16 мая 2010 г.
2001, 738 pages. The ease with which we recognize a face, understand spoken words, read handwritten characters, identify our car keys in our pocket by feel, and decide whether an apple is ripe by its smell belies the astoundingly complex processes that underlie these acts of pattern recognition. Pattern recognition — the act of taking in raw data and taking an action based on the "category" of the pattern — has been crucial for our survival, and...

Mahadevan S. Learning Representation and Control in Markov Decision Processes: New Frontiers

  • формат pdf
  • размер 1.27 МБ
  • добавлен 26 октября 2011 г.
Из серии Foundations and Trends in Machine Learning издательства NOWPress, 2008, -163 pp. This paper describes a novel machine learning framework for solving sequential decision problems called Markov decision processes (MDPs) by iteratively computing low-dimensional representations and approximately optimal policies. A unified mathematical framework for learning representation and optimal control in MDPs is presented based on a class of singula...

Marinai S., Fujisawa H. (eds.) Machine Learning in Document Analysis and Recognition

  • формат pdf
  • размер 3.03 МБ
  • добавлен 06 января 2012 г.
Издательство Springer, 2008, -256 pp. The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphical components of a document and to extract information. With first papers dating back to the 1960’s, DAR is a mature but still growing research field with consolidated and known techniques. Optical Character Recognition (OCR) engines are some of the most widely recognized products of the research in this field, while...

Mitchell Т. Machine learning

  • формат pdf
  • размер 17.24 МБ
  • добавлен 05 марта 2011 г.
This book covers the field of machine learning, which is the study of algorithms that allow computer programs to automatically improve through experience. The book is intended to support upper level undergraduate and introductory level graduate courses in machine learning. 1997, р. 414. The field of machine learning is concerned with the question of how to construct computer programs that automatically improve with experience. In recent years m...

Sammut C., Webb G.I. (eds.) Encyclopedia of Machine Learning

Энциклопедия
  • формат pdf
  • размер 34.6 МБ
  • добавлен 19 октября 2011 г.
Издательство Springer, 2011, -1058 pp. The term Machine Learning came into wide-spread use following the first workshop by that name, held at Carnegie-Mellon University in 1980. The papers from that workshop were published as Machine Learning: An Artificial Intelligence Approach, edited by Ryszard Michalski, Jaime Carbonell and Tom Mitchell. Machine Learning came to be identified as a research field in its own right as the workshops evolved into...

Wang C., Hill D.J. Deterministic Learning Theory for Identification, Recognition and Control

  • формат pdf
  • размер 10.94 МБ
  • добавлен 29 ноября 2011 г.
Издательство CRC Press, 2010, -218 pp. The problem of learning in dynamic environments is important and challenging. In the 1960s, learning from control of dynamical systems was studied extensively. At that time, learning was similar in meaning to other terms such as adaptation and self-organizing. Since the 1970s, learning theory has become a research discipline in the context of machine learning, and more recently as computational or statistic...

Zhang D., Tsai J. (eds.) Advances in Machine Learning Applications in Software Engineering

  • формат pdf
  • размер 4.45 МБ
  • добавлен 14 октября 2011 г.
Издательство Idea Group, 2007, -384 pp. Machine learning is the study of how to build computer programs that improve their performance at some task through experience. The hallmark of machine learning is that it results in an improved ability to make better decisions. Machine learning algorithms have proven to be of great practical value in a variety of application domains. Not surprisingly, the field of software engineering turns out to be a fe...

Zhang Y. (ed.) Application of Machine Learning

  • формат pdf
  • размер 7.33 МБ
  • добавлен 29 сентября 2011 г.
Издательство InTech, 2010, -288 pp. In recent years many successful machine learning applications have been developed, ranging from data mining programs that learn to detect fraudulent credit card transactions, to information filtering systems that learn user’s reading preferences, to autonomous vehicles that learn to drive on public highways. At the same time, machine learning techniques such as rule induction, neural networks, genetic learnin...

Zhang Y. (ed.) Machine Learning

  • формат pdf
  • размер 14.6 МБ
  • добавлен 12 ноября 2011 г.
Издательство InTech, 2010, -446 pp. The goal of this book is to present the key algorithms, theory and applications that from the core of machine learning. Learning is a fundamental activity. It is the process of constructing a model from complex world. And it is also the prerequisite for the performance of any new activity and, later, for the improvement in this performance. Machine learning is concerned with constructing computer programs tha...

Zhang Y. (ed.) New Advances in Machine Learning

  • формат pdf
  • размер 16.95 МБ
  • добавлен 12 ноября 2011 г.
Издательство InTech, 2010, -374 pp. The purpose of this book is to provide an up-to-data and systematical introduction to the principles and algorithms of machine learning. The definition of learning is broad enough to include most tasks that we commonly call Learning tasks, as we use the word in daily life. It is also broad enough to encompass computer that improve from experience in quite straight forward ways. Machine learning addresses the...