• формат pdf
  • размер 7.33 МБ
  • добавлен 29 сентября 2011 г.
Zhang Y. (ed.) Application of Machine Learning
Издательство InTech, 2010, -288 pp.

In recent years many successful machine leaing applications have been developed, ranging from data mining programs that lea to detect fraudulent credit card transactions, to information filtering systems that lea user’s reading preferences, to autonomous vehicles that lea to drive on public highways. At the same time, machine leaing techniques such as rule induction, neural networks, genetic leaing, case-based reasoning, and analytic leaing have been widely applied to real-world problems. Machine Leaing employs leaing methods which explore relationships in sample data to lea and infer solutions. Leaing from data is a hard problem. It is the process of constructing a model from data. In the problem of patte analysis, leaing methods are used to find pattes in data. In the classification, one seeks to predict the value of a special feature in the data as a function of the remaining ones. A good model is one that can effectively be used to gain insights and make predictions within a given domain.
General speaking, the machine leaing techniques that we adopt should have certain properties for it to be efficient, for example, computational efficiency, robustness and statistical stability. Computational efficiency restricts the class of algorithms to those which can scale with the size of the input. As the size of the input increases, the computational resources required by the algorithm and the time it takes to provide an output should scale in polynomial proportion. In most cases, the data that is presented to the leaing algorithm may contain noise. So the patte may not be exact, but statistical. A robust algorithm is able to tolerate some level of noise and not affect its output too much. Statistical stability is a quality of algorithms that capture true relations of the source and not just some peculiarities of the training data. Statistically stable algorithms will correctly find pattes in unseen data from the same source, and we can also measure the accuracy of corresponding predictions.
The goal of this book is to present the latest applications of machine leaing, mainly include: speech recognition, traffic and fault classification, surface quality prediction in laser machining, network security and bioinformatics, enterprise credit risk evaluation, and so on. This book will be of interest to industrial engineers and scientists as well as academics who wish to pursue machine leaing.
The book is intended for both graduate and postgraduate students in fields such as computer science, cybeetics, system sciences, engineering, statistics, and social sciences, and as a reference for software professionals and practitioners. The wide scope of the book provides them with a good introduction to many application researches of machine leaing, and it is also the source of useful bibliographical information.
Смотрите также

Alpaydin E. Introduction to Machine Learning

  • формат pdf
  • размер 2.87 МБ
  • добавлен 05 октября 2011 г.
Издательство MIT Press, 2010, -581 pp. Machine learning is programming computers to optimize a performance criterion using example data or past experience. We need learning in cases where we cannot directly write a computer program to solve a given problem, but need example data or experience. One case where learning is necessary is when human expertise does not exist, or when humans are unable to explain their expertise. Consider the recognitio...

Mahadevan S. Learning Representation and Control in Markov Decision Processes: New Frontiers

  • формат pdf
  • размер 1.27 МБ
  • добавлен 26 октября 2011 г.
Из серии Foundations and Trends in Machine Learning издательства NOWPress, 2008, -163 pp. This paper describes a novel machine learning framework for solving sequential decision problems called Markov decision processes (MDPs) by iteratively computing low-dimensional representations and approximately optimal policies. A unified mathematical framework for learning representation and optimal control in MDPs is presented based on a class of singula...

Marinai S., Fujisawa H. (eds.) Machine Learning in Document Analysis and Recognition

  • формат pdf
  • размер 3.03 МБ
  • добавлен 06 января 2012 г.
Издательство Springer, 2008, -256 pp. The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphical components of a document and to extract information. With first papers dating back to the 1960’s, DAR is a mature but still growing research field with consolidated and known techniques. Optical Character Recognition (OCR) engines are some of the most widely recognized products of the research in this field, while...

Mellouk A., Chebira A. (eds.) Machine Learning

  • формат pdf
  • размер 8.06 МБ
  • добавлен 12 ноября 2011 г.
Издательство InTech, 2009, -430 pp. Machine Learning is often referred to as a branch of artificial intelligence which deals with the design and the development of algorithms and techniques that help machines to learn. Hence, it is closely related to various scientific domains as Optimization, Vision, Robotic and Control, Theoretical Computer Science, etc. Based on this, Machine Learning can be defined in various ways related to a scientific do...

Mitchell Т. Machine learning

  • формат pdf
  • размер 17.24 МБ
  • добавлен 05 марта 2011 г.
This book covers the field of machine learning, which is the study of algorithms that allow computer programs to automatically improve through experience. The book is intended to support upper level undergraduate and introductory level graduate courses in machine learning. 1997, р. 414. The field of machine learning is concerned with the question of how to construct computer programs that automatically improve with experience. In recent years m...

Sammut C., Webb G.I. (eds.) Encyclopedia of Machine Learning

Энциклопедия
  • формат pdf
  • размер 34.6 МБ
  • добавлен 19 октября 2011 г.
Издательство Springer, 2011, -1058 pp. The term Machine Learning came into wide-spread use following the first workshop by that name, held at Carnegie-Mellon University in 1980. The papers from that workshop were published as Machine Learning: An Artificial Intelligence Approach, edited by Ryszard Michalski, Jaime Carbonell and Tom Mitchell. Machine Learning came to be identified as a research field in its own right as the workshops evolved into...

Wang C., Hill D.J. Deterministic Learning Theory for Identification, Recognition and Control

  • формат pdf
  • размер 10.94 МБ
  • добавлен 29 ноября 2011 г.
Издательство CRC Press, 2010, -218 pp. The problem of learning in dynamic environments is important and challenging. In the 1960s, learning from control of dynamical systems was studied extensively. At that time, learning was similar in meaning to other terms such as adaptation and self-organizing. Since the 1970s, learning theory has become a research discipline in the context of machine learning, and more recently as computational or statistic...

Zhang D., Tsai J. (eds.) Advances in Machine Learning Applications in Software Engineering

  • формат pdf
  • размер 4.45 МБ
  • добавлен 14 октября 2011 г.
Издательство Idea Group, 2007, -384 pp. Machine learning is the study of how to build computer programs that improve their performance at some task through experience. The hallmark of machine learning is that it results in an improved ability to make better decisions. Machine learning algorithms have proven to be of great practical value in a variety of application domains. Not surprisingly, the field of software engineering turns out to be a fe...

Zhang Y. (ed.) Machine Learning

  • формат pdf
  • размер 14.6 МБ
  • добавлен 12 ноября 2011 г.
Издательство InTech, 2010, -446 pp. The goal of this book is to present the key algorithms, theory and applications that from the core of machine learning. Learning is a fundamental activity. It is the process of constructing a model from complex world. And it is also the prerequisite for the performance of any new activity and, later, for the improvement in this performance. Machine learning is concerned with constructing computer programs tha...

Zhang Y. (ed.) New Advances in Machine Learning

  • формат pdf
  • размер 16.95 МБ
  • добавлен 12 ноября 2011 г.
Издательство InTech, 2010, -374 pp. The purpose of this book is to provide an up-to-data and systematical introduction to the principles and algorithms of machine learning. The definition of learning is broad enough to include most tasks that we commonly call Learning tasks, as we use the word in daily life. It is also broad enough to encompass computer that improve from experience in quite straight forward ways. Machine learning addresses the...