Учебное пособие. — М.: Физматлит, 2007. — 544 с. — ISBN
978-5-9221-0782-2.
В книге систематически излагаются теоретические основы
математических методов, используемых при анализе рисковых ситуаций.
Основное внимание уделено методам анализа страховых рисков. Наряду
с материалом, тради¬ционно излагаемым в рамках курсов лекций по
теории риска и страховой математике, в книгу включены некоторые
разделы, содержащие новейшие результаты.
Для студентов и аспирантов, обучающихся по математическим и экономико-математическим специальностям (математика, прикладная математика, актуарная математика, финансовая математика, страховое дело). Книга может использоваться актуариями и специалистами-аналитиками, работающими в страховых и финансовых компаниях, а также специалистами в области теории надежности и другими исследователями, чья деятельность связана с оцениванием риска и анализом разнообразных рисковых ситуаций.
Допущено учебно-методическим советом по прикладной математике и информатике УМО по классическому университетскому образованию в качестве учебного пособия для студентов вузов, обучающихся по специальности 010200 «Прикладная математика и информатика» и по направлению 510200 «Прикладная математика и информатика». Введение.
Основные понятия теории вероятностей.
Некоторые свойства случайных сумм.
Математические модели страхового риска.
Сравнение рисковых ситуаций и простейшие методы расчета страховых тарифов.
Модель индивидуального риска (статическая модель).
Дискретная динамическая модель коллективного риска.
Модели коллективного риска (динамические модели).
Вероятность разорения.
Обобщенные процессы риска.
Стоимостной подход к математическому описанию функционирования страховых компаний.
Статистическое оценивание параметров страховой деятельности.
Смешанные гауссовские вероятностные модели рисковых ситуаций.
Список литературы.
Для студентов и аспирантов, обучающихся по математическим и экономико-математическим специальностям (математика, прикладная математика, актуарная математика, финансовая математика, страховое дело). Книга может использоваться актуариями и специалистами-аналитиками, работающими в страховых и финансовых компаниях, а также специалистами в области теории надежности и другими исследователями, чья деятельность связана с оцениванием риска и анализом разнообразных рисковых ситуаций.
Допущено учебно-методическим советом по прикладной математике и информатике УМО по классическому университетскому образованию в качестве учебного пособия для студентов вузов, обучающихся по специальности 010200 «Прикладная математика и информатика» и по направлению 510200 «Прикладная математика и информатика». Введение.
Основные понятия теории вероятностей.
Некоторые свойства случайных сумм.
Математические модели страхового риска.
Сравнение рисковых ситуаций и простейшие методы расчета страховых тарифов.
Модель индивидуального риска (статическая модель).
Дискретная динамическая модель коллективного риска.
Модели коллективного риска (динамические модели).
Вероятность разорения.
Обобщенные процессы риска.
Стоимостной подход к математическому описанию функционирования страховых компаний.
Статистическое оценивание параметров страховой деятельности.
Смешанные гауссовские вероятностные модели рисковых ситуаций.
Список литературы.