Handbook of dielectric, piezoelectric and ferroelectric materials690
Randall C (2001), ‘Scientific and engineering issues of the state-of-the-art and future
multilayer capacitors’, J. Ceram. Soc. Jpn., 109, S2–S6.
Rawal B S, Khan M and Buessem W R (1981), ‘Grain core–grain shell structures in
barium titanate-based dielectrics’, Advances in Ceramics, The American Ceramic
Society Colombus, Ohio, 1, 172–188.
Reymond V, Michau D, Payan S and Maglione M (2004), ‘Strong improvement of the
dielectric losses of Ba
0.6
Sr
0.4
TiO
3
thin films using a SiO
2
barrier layer’, J. Phys.:
Condensed Matter, 16, 9155–9162.
Rytz D, Wechsler A, Garrett M H, Nelson C C and Schwartz R N (1990), ‘Photorefractive
properties of cobalt-doped barium titanate (BaTiO
3
)’, J. Opt. Soc. Am. B, 7(12), 2245–
2254.
Schwartz R N, Wechsler B A and MacFarlane R A ( 1992), ‘Photo-EPR study of light-
sensitive impurity and defects centers in photorefractive BaTiO
3
’, Phys. Rev. B, 46(6),
3263–3272.
Sengupta L C and Sengupta S (1999), ‘Breakthrough advances in low loss, tunable
dielectric materials’, Mat. Res. Innov., 2, 278–282.
Sengupta L C, Stowell S, Ngo E and O’Day M E (1995a), ‘Barium strontium titanate and
non-ferroelectric oxide ceramic composites for use in phase array antennas’, Integrated
Ferroelectrics, 8, 77–88.
Sengupta L C, Ngo E, Stowell S, and. O’Day M E (1995b), ‘Ceramic ferroelectric
composite material BSTO-MgO’, US Patent 5 427 988.
Sengupta L, Ngo E, Stowell S, O’Day M and Lancto R (1996), ‘Ceramic ferroelectric
composite material BSTO-ZrO
2
’, US Patent 5 486 491.
Sengupta S, Stowell S, Sengupta L and Joshi P C (2000), ‘Ferroelectric thin film composites
made by metalorganic decomposition’, US Patent 6 071 555.
Shih W H, Kisailus D and Wei Y (1995), ‘Silica coating on barium titanate particles’,
Mat. Lett., 24, 13–15.
Smyth D M (2000), ‘The effects of dopants on the properties of metal oxides’, Solid State
Ionics, 129, 5–12.
Smyth D M (2002), ‘The defect chemistry of donor-doped BaTiO
3
: a rebuttal’, J.
Electroceram., 9, 179–186.
Stolichnov I and Tagantsev A (1998), ‘Space charge influenced-injection model for
conduction in Pb(Zr
x
Ti
1–x
)O
3
thin films’, J. Appl. Phys., 84(6), 3216–3225.
Subramanian M A, Dong L, Duan N, Reisner B A, and Sleight A W (2000), ‘High
dielectric constant in ACu
3
Ti
4
O
12
and ACu
3
Ti
3
FeO
12
phases’, J. Solid State Chem.,
151(2), 323–325.
Synowczynski J, Hirsch S and Gersten B (2002), ‘Rapid gel cast prototyping of complex
paraelectric (Ba, Sr)TiO
3
/MgO composites’, Materials Research Society Symposium
Proceedings, 720, 203–208.
Sze S M (1969), Physics of Semiconductor Devices, Wiley International, New York.
Tian H Y, Qi J Q, Wang Y, Chan H L W and Choy C L (2005), ‘Core–shell structure of
nanoscaled Ba
0.5
Sr
0.5
TiO
3
self-wrapped by MgO derived from a direct solution synthesis
at room temperature’, Nanotechnology, 16, 47–52.
Vanhorst T, Schirmer O F, Kröse H, Scharfschwerdt R and Kool T W 1996), O
2–
holes
associated with alkali acceptors in BaTiO
3
’, Phys. Rev. B, 53(1), 116–125.
Vollman M and Waser R (1994), ‘Grain boundary defect chemistry of acceptor-doped
titanates: space charge layer width’, J. Am. Ceram. Soc., 77, 235–243.
Waser R and Klee M (1992), ‘Theory of conduction and breakdown in perovskite thin
films’, Integrated Ferroelectrics, 2, 23–40.