Handbook of dielectric, piezoelectric and ferroelectric materials384
F phase changes in ferroelectric ceramics,’ J. Intell. Mater. Syst. Struct., 9(6): 427–
431.
Cohen, R.E. 1992. ‘Origin of ferroelectricity in perovskite oxides,’ Nature, 358(6382):
136–138.
Cox, D.E., Noheda, B., Shirane, G., Uesu, Y., Fujishiro, K., and Yamada, Y. 2001. ‘Universal
phase diagram for high-piezoelectric perovskite systems,’ Appl. Phys. Lett., 79(3):
400–402.
Damjanovic, D. 1997. ‘Stress and frequency dependence of the direct piezoelectric effect
in ferroelectric ceramics,’ J. Appl. Phys., 82(4): 1788–1797.
Damjanovic, D. 2001. ‘Piezoelectric properties of perovskite ferroelectrics: unsolved
problems and future research,’ Annales de Chimie Science des Materiaux, 26(1): 99–
106.
Damjanovic, D., and Demartin, M. 1996. ‘Rayleigh law in piezoelectric ceramics,’ J.
Phys. D: Appl. Phys., 29(7): 2057–2060.
Damjanovic, D., Budimir, M., Davis, M., and Setter, N. 2003. ‘Monodomain versus
polydomain piezoelectric response of 0.67Pb(Mg
1/3
Nb
2/3
)O
3
–0.33PbTiO
3
single crystals
along nonpolar directions,’ Appl. Phys. Lett., 83(3): 527–529.
Dammak, H., Renault, A.E., Gaucher, P., Thi, M.P., and Calvarin, G. 2003. ‘Origin of the
giant piezoelectric properties in the [001] domain engineered relaxor single crystals,’
Jpn. J. Appl. Phys. Part 1, 42(10): 6477–6482.
Davis, M., Damjanovic, D., Hayem, D., and Setter, N. 2005. ‘Domain engineering of the
transverse piezoelectric coefficient in perovskite ferroelectrics,’ J. Appl. Phys., 98(1):
014102.
Eitel, R.E., Shrout, T.R., and Randall, C.A. 2006. ‘Nonlinear contributions to the dielectric
permittivity and converse piezoelectric coefficient in piezoelectric ceramics,’ J. Appl.
Phys., 99(12): 124110–124111.
Essig, O., Wang, P., Hartweg, M., Janker, P., Nafe, H., and Aldinger, F. 1999. ‘Uniaxial
stress and temperature dependence of field induced strains in antiferroelectric lead
zirconate titanate stannate ceramics,’ J. Eur. Ceram. Soc., 19(6–7): 1223–1228.
Fang, F., and Yang, W. 2002. ‘Indentation-induced cracking and 90 degrees domain
switching pattern in barium titanate ferroelectric single crystals under different poling,’
Mater. Lett., 57(1): 198–202.
Feng, Z., Luo, H., Guo, Y., He, T., and Xu, H. 2003. ‘Dependence of high electric-field-
induced strain on the composition and orientation of Pb(Mg
1/3
Nb
2/3
)O
3
–PbTiO
3
crystals,’
Solid State Commun., 126(6): 347–351.
Fiebig, M., Lottermoser, T., Frohlich, D., Goltsev, A.V., and Pisarev, R.V. 2002. ‘Observation
of coupled magnetic and electric domains,’ Nature, 419(6909): 818–820.
Fu, H., and Cohen, R.E. 2000. ‘Polarization rotation mechanism for ultrahigh
electromechanical response in single–crystal piezoelectrics,’ Nature, 403(6767): 281–
283.
Fujishiro, K., Vlokh, R., Uesu, Y., Yamada, Y., Kiat, M., Dkhil, B., and Yamashita, Y.
1998. ‘Optical observation of heterophase and domain structures in relaxor ferroelectrics
Pb(Zn
1/3
Nb
2/3
)O
3
–9%PbTiO
3
,’ Jpn. J. Appl. Phys., Part 1, 37: 5246–5248.
George, A.M., Iniguez, J., and Bellaiche, L. 2001. ‘Anomalous properties in ferroelectrics
induced by atomic ordering,’ Nature, 413(6851): 54–57.
Gerthsen, P., Hardtl, K.H., and Schmidt, N.A. 1980. ‘Correlation of mechanical and
electrical losses in ferroelectric ceramics,’ J. Appl. Phys., 51(2): 1131–1134.
Glinchuk, M.D. 2004. ‘Relaxor ferroelectrics: from cross superparaelectric model to
random field theory,’ Br. Ceram. Trans., 103(2): 76–82.