
147
4. APPLICATION OF THE PCA-DEA MODELS
In order to illustrate the potential of these models, we will present the
results of a dataset existing in the literature. The numerical illustration was
first analyzed in Hokkanen and Salminen (1997a, b) in which 22 solid waste
management treatment systems in the Oulu region of Finland were compared
over 5 inputs and 3 outputs (defined in Sarkis (2000)). The original data is
presented in Table 8-1 and the results of the principal components analysis
in Table 8-2.
Table 8-1. Original data for location of solid waste management system in Oulu Finland
DMU Inputs Outputs
Cost Global Effects
Health
Effects
Acidificative
releases
Surface
water
releases
Technical
feasibility
Employees
Resource
recovery
1 656 552,678,100 609 1190 670 5.00 14 13,900
2 786 539,113,200 575 1190 682 4.00 18 23,600
3 912 480,565,400 670 1222 594 4.00 24 39,767
4 589 559,780,715 411 1191 443 9.00 10 13,900
5 706 532,286,214 325 1191 404 7.00 14 23,600
6 834 470,613,514 500 1226 384 6.50 18 40,667
7 580 560,987,877 398 1191 420 9.00 10 13,900
8 682 532,224,858 314 1191 393 7.00 14 23,600
9 838 466,586,058 501 1229 373 6.50 22 41,747
10 579 561,555,877 373 1191 405 9.00 9 13,900
11 688 532,302,258 292 1191 370 7.00 13 23,600
12 838 465,356,158 499 1230 361 6.50 17 42,467
13 595 560,500,215 500 1191 538 9.00 12 13,900
14 709 532,974,014 402 1191 489 7.00 17 23,600
15 849 474,137,314 648 1226 538 6.50 20 40,667
16 604 560,500,215 500 1191 538 9.00 12 13,900
17 736 532,974,014 402 1191 489 7.00 17 23,600
18 871 474,137,314 648 1226 538 6.50 20 40,667
19 579 568,674,539 495 1193 558 9.00 7 13,900
20 695 536,936,873 424 1195 535 6.00 18 23,600
21 827 457,184,239 651 1237 513 7.00 16 45,167
22 982 457,206,173 651 1239 513 7.00 16 45,167
In this example, it could be argued that two PCs on the input side and
two PCs on the output side explain the vast majority of the variance in the
original data matrices, since they each explain more than 95% of the
correlation, as shown in Table 8-2. It should be noted here that the results
of a PCA are unique up to a sign and must therefore be chosen carefully to
ensure feasibility of the subsequent PCA-DEA model (Dillon and
Goldstein (1984)).
Adler & Golany, PCA-DEA