λ
H
′
1
Ψ
′
0
+ H
′
0
Ψ
′
1
= E
1
S
0
Ψ
′
0
+ E
0
S
1
Ψ
′
0
+ E
0
S
0
Ψ
′
1
Ψ
′
0
H
′
0
S
0
hΨ
′
0
|(H
′
0
− E
0
S
0
) = 0,
hΨ
′
0
|H
′
0
− E
0
S
0
|Ψ
′
1
i = 0,
hΨ
′
0
|H
′
1
|Ψ
′
0
i = E
1
hΨ
′
0
|S
0
|Ψ
′
0
i
+ E
0
hΨ
′
0
|S
1
|Ψ
′
0
i
ψ
′
0L
E
1
= hΨ
′
0
|H
′
1
− E
0
S
1
|Ψ
′
0
i =
*
ψ
′
0L
ψ
′
0S
0 0
0 V −E
0
ψ
′
0L
ψ
′
0S
+
= hψ
′
0S
|V −E
0
|ψ
′
0S
i,
E
1
=
1
4
hψ
′
0L
|(σ, p)( V −E
0
)(σ, p)|ψ
′
0L
i
ψ
′
0L
σ
(σ, p)V = V (σ, p) − i (σ, (∇V ))
(σ, p)V (σ, p) = V p
2
− i (σ, (∇V )) (σ, p)
= V p
2
− i ((∇V ), p)
+ (σ, (∇V ) × p)