
Conductivity Percolation of Carbon Nanotubes in Polyacrylamide Gels
213
Choi, C. S.; Park, B.J. & Choi, H.J. (2007). Electrical and rheological characteristics of poly
(vinyl acetate)/multi-walled carbon nanotube nanocomposites, Diamond and Related
Materials Vol. 16, pp. 1170- 1173.
de Gennes, P. G. (1988). Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca.
Derrida, B.; Stauffer, D.; Herrman, H. J. & Vannimenus J. (1983).Transfer matrix calculation
of conductivity in three- dimensional random resistor networks at percolation
threshold. Le Journal de Physics Letters, Vol. 44, pp. L701-L706.
Du, F.; Scogna, R.C.; Zhou, W.; Brand, S.; Fischer, J. E. & Winey, K. I. (2004). Nanotube
networks in polymer nanocomposites: rheology and electrical conductivity,
Macromolecules, Vol. 37, pp. 9048- 9055.
Durand, D. & Bruneau, C. -M. (1979). Reactivity and Gelation. I. Intrinsic Reactivity. Journal of Polymer
Science: Polymer Physics Education, Vol. 17, pp. 273- 294.
Fisch, R. & Harris, A. B. (1978). Critical behavior of random resistor networks near the
percolation threshold. Physical Review B, Vol. 18, pp. 416- 420.
Flory, P. J. (1941). Molecular Size Distribution in Three Dimensional Polymers. I. Gelation.
Journal of American Chemical Society, Vol. 63, pp. 3083- 3090.
Galanin, M. D. (1995). Luminescence of Molecules and Crystals, Cambridge International
Science Publishing.
Gao, L.; Zhaou, X. & Ding, Y. (2007). Effective thermal and electrical conductivity of carbon
nanotube composites. Chemical Physics Letters Vol. 434, pp. 297- 300.
Gingold, D. B. & Lobb, C. J. (1990). Percolative conduction in three dimensions. Physical
Review B, Vol. 42, pp. 8220- 8224.
Gordon, M. (1962). Good’s theory of cascade processes applied to the statistics of polymer distributions.
Proceeding Royal Society A, Vol. 268, pp. 240-256.
Herculus, D. M. (1965). Fluorescence and Phosphorescence Analysis, Wiley Interscience, New
York.
Herrman, H. J.; Derrida, B. & Vannimenus, J. (1984). Superconductivity exponents in two
and three dimensional percolation. Physical Review B, Vol. 30, pp. 4080- 4082.
Hermann, H. J. (1986). Geometrical cluster growth models and kinetic gelation. Physics Report,
Vol.136, pp.153-224.
Hill D. E.; Lin, Y.; Rao, A. M.; Allard, L. F. & Sun, Y.-P. (2002). Functionalization of Carbon
nanotubes with Polystyrene, Macromolecules, Vol.35, pp.9466–9471.
Hu, G.; Zhao, C.; Zhangi, S.; Yang, M.; Wang, Z. (2006). Low percolation thresholds of
electrical conductivity and rheology in poly (ethylene terephthalate) through the
networks of multi- walled carbon nanotubes. Polymer, Vol. 47, pp. 480- 488.
Kaya, D.; Pekcan, Ö. & Yılmaz, Y. (2004). Direct test of the critical exponents at the sol- gel
transition. Physical Review E. Vol. 69, pp. 16117(1-10).
Kymakis, E.; Alexandou, I. & Amaratunga, G. A. J. (2002). Single-walled carbon nanotube–
polymer composites: electrical, optical and structural investigation, Synthetic Metals,
Vol. 127, pp. 59- 62.
Lau, K. T. & Hui, D. (2002). The revolutionary creation of new advanced materials- carbon
nanotube composites. Composites Part B, Engineering, Vol. 33, pp. 263–277.
lijima, S. (1991). Helical microtubules of graphitic carbon. Nature, Vol. 354, pp.56.
Li, X.; Guan, W.; Yan, H. & Huang, L. (2004). Fabrication and atomic force microscopy/
friction force microscopy studies of polyacrylamide-carbon nanotubes copolymer
thin films. Materials Chemistry and Physics, Vol. 88, pp. 53- 58.
Macosko, C. W. & Miller, D. R. (1976). A new derivation of Average Molecular Weights of Nonlinear
Polymers, Macromolecules, Vol. 9, pp. 199- 206.